• Microelectronics
  • Vol. 52, Issue 2, 169 (2022)
WANG Tao1 and LAI Fan2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220090 Cite this Article
    WANG Tao, LAI Fan. Semiconductor Devices Technology Development Trends of Millimeter Wave Wireless Communication[J]. Microelectronics, 2022, 52(2): 169 Copy Citation Text show less
    References

    [1] ZHIRNOV V. Seismic shift #1: the analog data deluge [EB/OL]. https://www.linkedin.com/pulse/seismic-shift-1-analog-data-deluge-victor-zhirnov, 2020.

    [2] CHEN Y K, CHANG T H, SIVANANTHAN A. Advanced mm-wave power electronics (invited talk) [Z]. Defense Advanced Research Projects Agency. Arlington, VA, USA.

    [4] LIU J, SHI Y, FADLULLAH Z M, et al. Space-air-ground integrated network: a survey [J]. IEEE Commun Surveys Tuts, 2018, 20(4): 2714-2741.

    [5] International Telecommuication Union. Smart energy saving of 5G base station: based on AI and other emerging technologies to forecast and optimize the management of 5G wireless network energy consumption [Z]. Telecommunication Standardization Sector of ITU.

    [6] ARORA A, TSINOS C G, BHAVANI S M R, et al. Majorization-minimization algorithms for analog beamforming with large-scale antenna arrays [C]// IEEE GlobalSIP. 2019: 1-5.

    [7] ZHANG S, HUANG Y. Complex quadratic optimization and semidefinite programming [J]. SIAM J Optim, 2006, 16(3): 871-890.

    [8] THOMPSON P. Adaptation by direct phase-shift adjustment in narrow-band adaptive antenna systems [J]. IEEE Trans Antennas Propag, 1976, 24(5): 756-760.

    [9] HEATH JR R W, GONZALEZ-PRELCIC N, RANGAN S, et al. An overview of signal processing techniques for millimeter wave MIMO systems [J]. IEEE J Selec Topics Signal Process, 2016, 10(3): 436-453.

    [10] JIANG M, CHEN Z N, ZHANG Y, et al. Metamaterial based thin planar lens antenna for spatial beamforming and multibeam massive MIMO [J]. IEEE Trans Antennas Propag, 2017, 65(2): 464-472.

    [11] KANG D, KOH K, REBEIZ G M. A Ku-band two-antenna four-simultaneous beams SiGe BiCMOS phased array receiver [J]. IEEE Trans Microw Theory Techn, 2010, 58(4): 771-780.

    [12] JEON S S, WANG Y, QIAN Y, et al. A novel smart antenna system implementation for broad-band wireless communications [J]. IEEE Trans Antennas Propag, 2002, 50(5): 600-606.

    [13] AHMAD W, ZHANG H B, CHEN Y W, et al. Full digital transmit beamforming with low RF complexity for large-scale mmWave MIMO system [C]// IEEE Int Conf Commun (ICC). 2020.

    [14] BAILLEUL P K. A new era in elemental digital beamforming for spaceborne communications phased arrays [J]. Proceed IEEE, 2016, 104(3): 623-632.

    [15] HONG W, ZHOU J Y, CHEN J X, et al. Asymmetric full-digital beamforming mmwave massive MIMO systems for B5G/6G wireless communications [C]// IEEE Asia-Pacific Microw Conf. 2020: 31-32.

    [16] GESBERT D, SHAFI M, SHIU D, et al. From theory to practice: an overview of MIMO space-time coded wireless systems [J]. IEEE J Selec Areas Commun, 2003, 21(3): 281-302.

    [17] GESBERT D, HANLY S, HUANG H, et al. Multi-cell MIMO cooperative networks: a new look at interference [J]. IEEE J Selec Areas Commun, 2010, 28(9): 1380-1408.

    [18] ORHAN O, NIKOPOUR H, NAM J Y, et al. A power efficient fully digital beamforming architecture for mmWave Communications [C]// IEEE 89th Vehicular Technol Conf. 2019.

    [19] HAIDER M F, NAHIVAN A S, MISHUK M N. Energy efficiency analysis of hybrid beamforming for 60 GHz mmWave communications [C]// The Int Elec Engineer Congr. 2019.

    [20] KARACORA Y, KARIMINEZHAD A, SEZGIN A. Hybrid beamforming: where should the analog power amplifiers be placed? [C]// ICASSP. 2019: 4719-4723.

    [21] ZHANG R, ZHOU J, LAN J, et al. A high precision hybrid analog and digital beamforming transceiver system for 5G millimeter-wave communication [J]. IEEE Access, 2019, 7: 83012-83023.

    [22] ZHANG J A, HUANG X, DYADYUK V, et al. Massive hybrid antenna array for millimeter-wave cellular communications [J]. IEEE Wirel Commun, 2015, 22(1): 79-87.

    [23] PAYAMI S, KHALILY M, ARAGHI A, et al. Developing the first mmWave fully-connected hybrid beamformer with a large antenna array [J]. IEEE Access, 2020, 8: 141282-114129.

    [24] HU Y, HONG W. A novel hybrid analog-digital multibeam antenna array for massive MIMO applications [C]// IEEE Asia-Pacific Conf Antennas Propag. Auckland, New Zealand. 2018: 42-45.

    [25] JEON S S, WANG Y, QIAN Y, et al. A novel smart antenna system implementation for broad-band wireless communications [J]. IEEE Trans Antennas Propag, 2002, 50(5): 600-606.

    [26] YANG B, YU Z, ZHANG R, et al. Local oscillator phase shifting and harmonic mixing-based high-precision phased array for 5G millimeter-wave communications [J]. IEEE Trans Microw Theory Techn, 2019, 67(7): 3162-3173.

    [27] KANG D, KOH K, REBEIZ G M. A Ku-band two-antenna four-simultaneous beams SiGe BiCMOS phased array receiver [J]. IEEE Trans Microw Theory Techn, 2010, 58(4): 771-780.

    [28] SAYGINER M, REBEIZ G M. An eight-element 2-16-GHz programmable phased array receiver with one two or four simultaneous beams in SiGe BiCMOS [J]. IEEE Trans Microw Theory Techn, 2016, 64(12): 4585-4597.

    [29] TEKKOUK K, HIROKAWA J, SAULEAU R, et al. Dual-layer ridged waveguide slot array fed by a butler matrix with sidelobe control in the 60-GHz band [J]. IEEE Trans Antennas Propag, 2015, 63(9): 3857-3867.

    [30] CHEN P, HONG W, KUAI Z, et al. A double layer substrate integrated waveguide blass matrix for beamforming applications [J]. IEEE Microw Wirel Compon Lett, 2009, 19(6): 374-376.

    [31] ZENG Y, ZHANG R, CHEN Z N. Electromagnetic lens-focusing antenna enabled massive MIMO: performance improvement and cost reduction [J]. IEEE J Selec Areas Commun, 2014, 32(6): 1194-1206.

    [33] Semicondunctor Research Corporation. Decadal plan for semiconductors [EB/OL]. https://www.src.org/about/ decadal-plan/decadal-plan-full-report.pdf, 2021.

    [34] SINGH J, DABEER O, MADHOW U, et al. On the limits of communication with low-precision analog-to- digital conversion at the receiver [J]. IEEE Trans Commun, 2009, 57(12): 3629-3639.

    [35] ORHAN O, ERKIP E, RANGAN S. Low power analog-to-digital conversion in millimeter wave systems: impact of resolution and bandwidth on performance [C]// Proc IEEE ITA. 2015: 191-198.

    [36] DUTTA S, BARATI C N, DHANANJAY A, et al. 5G millimeter wave cellular system capacity with fully digital beamforming [C]// 51st Asilomar Conf Signals Syst Comput. 2018.

    [37] MO J, ALKHATEEB A, ABU-SURRA S, et al. Hybrid architectures with few-bit ADC receivers: achievable rates and energy-rate tradeoffs [J]IEEE Trans Wirel Commun, 2017, 16(4): 2274-2287.

    [38] ZHANG W C, XIA X X, FU Y K, et al. Hybrid and full-digital beamforming in mmWave massive MIMO systems: a comparison considering low-resolution ADCs [J]. China Commun, 2019, 16(6): 91-102.

    [39] DANZILLIO D. Advanced GaAs integration for single chip mmWave front-ends [J]. Microw J, 2018, 61(5): 148-156.

    [40] PANG J, WU R, WANG Y, et al. A 28 GHz CMOS phased-array transceiver featuring gain invariance based on LO phase shifting architecture with 01-degree beam - steering resolution for 5G new radio [C]// IEEE RFIC. 2018.

    [41] CHO Y, LEE W, PARK H, et al. A 16-element phased-array CMOS transmitter with variable gain controlled linear power amplifier for 5G new radio [C]// IEEE RFIC. 2019.

    [42] SADHU B, TOUSI Y, HALLIN J, et al. A 28-GHz 32-element TRX phased-array IC with concurrent dual- polarized operation and orthogonal phase and gain control for 5G communications [J]. IEEE J Sol Sta Circ, 2017, 52(12): 3373-3391.

    [43] MixComm Inc. Eight-channel front-end RFIC claims new record for 28 GHz power efficiency and integration [Z]. 2020.

    [44] NING K, FANG Y, HOSSEINZADEH N, et al. A 30-GHz CMOS SOI outphasing power amplifier with current mode combining for high backoff efficiency and constant envelope operation [J]. IEEE J Sol Sta Circ, 2020, 55(5): 1411-1421.

    [45] Fairview Microwave. GaN’s role in 5G [EB/OL]. https:// www.mpdigest.com/2018/07/24/gans-role-in-5g, 2018.

    [46] SCAVENNEC A, SOKOLICH M, BAEYENS Y. Semiconductor technologies for higher frequencies [J]. IEEE Microw Magaz, 2009, 10(2): 77-87.

    [47] BANDYOPADHYAY A. FD-SOI enabled mmWave telecommunication applications and system architectures [C]// IEEE 44th ESSCIRC. 2018.

    [48] FITZGERALD E A, LEE K E, YOON S F, et al. Enabling the integrated circuits of the future [C]// EDSSC. Singapore. 2015: 1-4.

    [49] LEE K H, BAO S, FITZGERALD E A, et al. Integration of Ⅲ-Ⅴ materials and Si-CMOS through double layer transfer process [J]. Jpn J Appl Phys, 2015, 54: 030209.

    [50] SADANA D K, CHENG C W, WACASER B, et al. Materials challenges for Ⅲ-Ⅴ/Si co-integrated CMOS [C]// IEEE Custom Integr Circ Conf. 2015.

    [51] ZHOU X, CHIAH S B. Monolithic Ⅲ-Ⅴ/CMOS co-integrated technology, scalable compact modeling, and hybrid circuit design [C]// Int Conf Sol Sta Integr Circuit Technol. Qingdao, China. 2018.

    [52] WU S Y, LIAW J J, LIN C Y, et al. A highly manufacturable 28 nm CMOS low power platform technology with fully functional 64 Mb SRAM using dual/tripe gate oxide process [C]// IEEE Symp VLSI Technol. 2009: 210-211.

    [53] LIANG C W, CHEN M T, JENG J S, et al. A 28 nm poly/SiON CMOS technology for low power SoC applications [C]// IEEE Symp VLSI Technol. 2011: 38- 39.

    [54] YANG M T, LIAO K, WELSTAND R, et al. RF and mixed-signal performances of a low cost 28 nm low-power CMOS technology for wireless system-on-chip applications [C]// IEEE Symp VLSI Technol. 2011: 40-41.

    [55] AGSHIKAR A, WIATR M, WONG J S, et al. RF performance of 28 nm polySiON and HKMG CMOS devices [C]// IEEE Radio Freq Integr Circ Symp. 2015: 43-46.

    [56] Globalfoundries. HKMG leading edge technologies [EB/OL]. https://globalfoundries.com, 2016.

    [57] LI W K, CHAN W C, TSAI T C, et al. A 2×2 80211ac WiFi transceiver supporting per channel 160 MHz operation in 28 nm CMOS [C]// IEEE Radio Freq Integr Circ Symp. 2017.

    [58] DASGUPTA K, DANESHGAR S, THAKKAR C, et al. A 25 Gb/s 60 GHz digital power amplifier in 28 nm CMOS [J]. 43rd IEEE Europ Sol Sta Circ Conf. 2017: 207-210.

    [59] JOSEPH A, LIU Q Z, HODGE W, et al. A 035 μm SiGe BiCMOS technology for power amplifier applications [C]// IEEE BCTM. 2007: 198-201.

    [60] KLEMMER N. GaN for communications [C]// SRC Decadal Plan Workshop on New Trajectories for Communication, Qualcomm. San Diego, CA, USA. 2020.

    [61] GAMMEL P. Silicon technology for sub-THz applications [C]// SRC Decadal Plan Workshop on New Trajectories for Communication, Qualcomm. San Diego, CA, USA. 2020.

    [62] WANG H. Sub-THz wireless communication & sensing - a perspective on device, circuit, and system [EB/OL]. https://mmwavecoalition.org/wp-content/ uploads.

    [63] DALY D C, FUJINO L C, SMITHK C. Through the looking glass - 2020 edition: trends in solid-state circuits from ISSCC [J]. IEEE Sol Sta Circ Magaz, 2020,12(1): 8-24.

    [64] RUCKER H, HEINEMANN B. High-performance SiGe HBTs for next generation BiCMOS technology [J]. Semicond Sci Technol, 2018, 33(11): 1140031-114036.

    [65] Yole Development. 5G impact on RF front-end modules & connectivity for cellphones [Z]. 2018.

    [66] BRAUN T, LE T H, MULLER F, et al. Development of a scalable AiP module for mmWave 5G MIMO applications based on a double molded FOWLP approach [C]// IEEE 71st Elec Compon Technol Conf. 2015: 2009-2021.

    [67] PAUZA J, BANDYOPADHYAY A, SLAMANI M, et al. RF mmWave test complexity, a growing concern for 5G front-end-modules [EB/OL]. https://www.globalfoundries.com/sites/default/files/22fdx-productbrief. pdf, 2019.

    [68] MARTINEZ A O, DE CARVALHO E, NIELSEN J O. Towards very large aperture massive MIMO: a measurement based study [C]// Proc IEEE Globecom Workshops. 2014: 281-286.

    [69] SHEPARD C, YU H, ANAND N, et al. Argos: practical many-antenna base stations [C]// ACM Int Conf Mobile Computing and Networking. 2012.

    [70] SUZUKI H, KENDALL R, ANDERSON K, et al. Highly spectrally efficient NGARA rural wireless broadband access demonstrator [C]// Int Symp Commun Inform Technol. 2012: 914-919.

    [71] YU Y, CUI P F, SHE J, et al. Measurement and empirical modeling of massive MIMO channel matrix in real indoor environment [C]// 8th Int Conf Wirel Commun & Signal Process. 2016: 1-5.

    [72] KYOSTI P, FAN W, PEDERSEN G F, et al. On dimensions of OTA setups for massive MIMO base stations radiated testing [J]. IEEE Access, 2016, 4: 5971-5981.

    [73] HANCOCK T M. Microsystems technology office broad agency announcement, DARPA BAA HR00111850020 [Z]. Millimeter-Wave Digital Array. 2018.

    [74] WOODWARD T. The DARPA 100 Gb/s RF backbone program [EB/OL]. https://mmwrcnece.wiscweb.wisc.edu, 2017.

    [75] CUNG G, SPENCE T, BORODULIN P. Enabling broadband, highly integrated phased array radiating elements through additive manufacturing [C]// IEEE Int Symp Phased Array Syst Technol. 2016: 1-9.

    CLP Journals

    [1] LU Zhengwei, SU Yongbo, ZHEN Wenxiang, DING Wuchang, WEI Haomiao, CAO Shurui, DING Jianjun, JIN Zhi. Design of a Power Amplifier Using CB Stack Based on InP DHBT[J]. Microelectronics, 2023, 53(5): 807

    WANG Tao, LAI Fan. Semiconductor Devices Technology Development Trends of Millimeter Wave Wireless Communication[J]. Microelectronics, 2022, 52(2): 169
    Download Citation