• Photonics Research
  • Vol. 10, Issue 12, 2778 (2022)
Li Chen1、2、†,*, Jie Sun1、†, Wei Guo1、2, Jason Hoo3, Wei Lin4, Hangyang Chen4, Houqiang Xu1、5, Long Yan3, Shiping Guo3, Junyong Kang4, and Jichun Ye1、2、6
Author Affiliations
  • 1Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 2Yongjiang Laboratory, Ningbo 315201, China
  • 3Advanced Micro-Fabrication Equipment Inc., Shanghai 201201, China
  • 4Department of Physics, Xiamen University, Xiamen 361005, China
  • 5University of Chinese Academy of Sciences, Beijing 100049, China
  • 6e-mail:
  • show less
    DOI: 10.1364/PRJ.459897 Cite this Article Set citation alerts
    Li Chen, Jie Sun, Wei Guo, Jason Hoo, Wei Lin, Hangyang Chen, Houqiang Xu, Long Yan, Shiping Guo, Junyong Kang, Jichun Ye. Multi-step in situ interface modification method for emission enhancement in semipolar deep-ultraviolet light emitting diodes[J]. Photonics Research, 2022, 10(12): 2778 Copy Citation Text show less
    References

    [1] M. Kneissl, T. Seong, J. Han, H. Amano. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics, 13, 233-244(2019).

    [2] W. Lin, W. Jiang, N. Gao, D. Cai, S. Li, J. Kang. Optical isotropization of anisotropic wurtzite Al-rich AlGaN via asymmetric modulation with ultrathin (GaN)m/(AlN)n superlattices. Laser Photon. Rev., 7, 572-579(2013).

    [3] L. Chen, W. Lin, H. Wang, J. Li, J. Kang. Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling. Light Sci. Appl., 9, 104(2020).

    [4] L. Chen, W. Lin, H. Chen, H. Xu, C. Guo, Z. Liu, J. Yan, J. Sun, H. Liu, J. Wu, W. Guo, J. Kang, J. Ye. Annihilation and regeneration of defects in 1122 semipolar AlN via high-temperature annealing and MOVPE regrowth. Cryst. Growth Des., 21, 2911-2919(2021).

    [5] M. Jo, Y. Itokazu, S. Kuwaba, H. Hirayama. Improved crystal quality of semipolar AlN by employing a thermal annealing technique with MOVPE. J. Cryst. Growth, 507, 307-309(2019).

    [6] M. Jo, N. Morishita, N. Okada, Y. Itokazu, N. Kamata, K. Tadatomo, H. Hirayama. Impact of thermal treatment on the growth of semipolar AlN on m-plane sapphire. AIP Adv., 8, 105312(2018).

    [7] H. Miyake, C. Lin, K. Tokoro, K. Hiramatsu. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J. Cryst. Growth, 456, 155-159(2016).

    [8] A. Knauer, A. Mogilatenko, J. Weinrich, S. Hagedorn, S. Walde, T. Kolbe, L. Cancellara, M. Weyers. The impact of AlN templates on strain relaxation mechanisms during the MOVPE growth of UVB-LED structures. Cryst. Res. Technol., 55, 1900215(2020).

    [9] C. Kai, H. Zang, J. Ben, K. Jiang, Z. Shi, Y. Jia, X. Cao, W. Lu, X. Sun, D. Li. Origination and evolution of point defects in AlN film annealed at high temperature. J. Lumin., 235, 118032(2021).

    [10] B. Leung, Q. Sun, C. Yerino, J. Han. Using the kinetic Wulff plot to design and control nonpolar and semipolar GaN heteroepitaxy. Semicond. Sci. Technol., 27, 024005(2012).

    [11] Q. Sun, C. Yerino, B. Leung, J. Han, M. Coltrin. Understanding and controlling heteroepitaxy with the kinetic Wulff plot: a case study with GaN. J. Appl. Phys., 110, 053517(2011).

    [12] Y. Seta, T. Akiyama, A. Pradipto, K. Nakamura, T. Ito. Absolute surface energies of semipolar planes of AlN during metalorganic vapor phase epitaxy growth. J. Cryst. Growth, 510, 7-12(2019).

    [13] D. Dinh, N. Hu, Y. Honda, H. Amano. Pulsed-flow growth of polar, semipolar and nonpolar AlGaN. J. Mater. Chem. C, 8, 8668-8675(2020).

    [14] Y. Kangawa, T. Akiyama, T. Ito, K. Shiraishi, T. Nakayama. Surface stability and growth kinetics of compound semiconductors: an ab initio-based approach. Materials, 6, 3309-3360(2013).

    [15] Q. Zhuang, W. Lin, W. Yang, W. Yang, C. Huang, J. Li, H. Chen, S. Li, J. Kang. Defect suppression in AlN epilayer using hierarchical growth units. J. Phys. Chem. C, 117, 14158-14164(2013).

    [16] S. Lazarev, S. Bauer, T. Meisch, M. Bauer, I. Tischer, M. Barchuk, K. Thonke, V. Holy, F. Scholz, T. Baumbach. Three-dimensional reciprocal space mapping of diffuse scattering for the study of stacking faults in semipolar 1122 GaN layers grown from the sidewall of an r-patterned sapphire substrate. J. Appl. Crystallogr., 46, 1425-1433(2013).

    [17] D. Dinh, M. Conroy, V. Zubialevich, N. Petkov, J. Holmes, P. Parbrook. Single phase 1122 AlN grown on 1010 sapphire by metalorganic vapour phase epitaxy. J. Cryst. Growth, 414, 94-99(2015).

    [18] J. Stellmach, F. Mehnke, M. Frentrup, C. Reich, J. Schlegel, M. Pristovsek, T. Wernicke, M. Kneissl. Structural and optical properties of semipolar 1122 AlGaN grown on 1010 sapphire by metal-organic vapor phase epitaxy. J. Cryst. Growth, 367, 42-47(2013).

    [19] U. Haboeck, H. Siegle, A. Hoffmann, C. Thomsen. Lattice dynamics in GaN and AlN probed with first- and second-order Raman spectroscopy. Phys. Status Solidi C, 1710-1731(2003).

    [20] A. Romanov, E. Young, F. Wu, A. Tyagi, C. Gallinat, S. Nakamura, S. DenBaars, J. Speck. Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy. J. Appl. Phys., 109, 103522(2011).

    Li Chen, Jie Sun, Wei Guo, Jason Hoo, Wei Lin, Hangyang Chen, Houqiang Xu, Long Yan, Shiping Guo, Junyong Kang, Jichun Ye. Multi-step in situ interface modification method for emission enhancement in semipolar deep-ultraviolet light emitting diodes[J]. Photonics Research, 2022, 10(12): 2778
    Download Citation