• Infrared and Laser Engineering
  • Vol. 47, Issue 12, 1230007 (2018)
Hong Guanglie1、*, Liang Xindong2, Xiao Chunlei1, Kong Wei1, and Shu Rong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1230007 Cite this Article
    Hong Guanglie, Liang Xindong, Xiao Chunlei, Kong Wei, Shu Rong. High-power optical parametric oscillator at 935 nm for water-vapor differential absorption lidar transmitter[J]. Infrared and Laser Engineering, 2018, 47(12): 1230007 Copy Citation Text show less
    References

    [1] Noah S Higdon, Edward V Browell, Patrick Ponsardin, et al. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols[J]. Applied Optics, 1994, 33(27): 6422-6438.

    [2] Wulfmeyer V. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter[J]. Applied Optics, 1998, 37(18): 3804-3824.

    [3] Hannes Vogelmann, Thomas Trickl. Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station[J]. Applied Optics, 2008, 47(12): 2116-2132.

    [4] Poberaj G, Fix A, Assio A, et al. Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy [J]. Applied Physics B, 2002, 75: 165-172.

    [5] Wirth M, Fix A, Mahnke P, et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance[J]. Applied Physics B, 2009, 96: 201-213.

    [6] Ehret G, Fix A, Weiss V, et al. Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere [J]. Applied Physics B, 1998, 67: 427-431.

    [7] Paolo Di Girolamo, Andreas Behrendt, Christoph Kiemle, et al. Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions[J]. Remote Sensing of Environment, 2008, 112: 1552-1568.

    [8] Kiemle C, Wirth M, Fix A, et al. First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and inter comparisons with other instruments [J]. Atmos Chem Phys, 2008, 8: 5245-5261.

    [9] Ti Chuang, Brooke Walters, Tim Shuman, et al. Single frequency and wavelength stabilized near infrared laser transmitter for water vapor DIAL remote sensing application [C]//SPIE, 2015, 9342: 93420J.

    [10] Hong Guanglie, Li Jiatang, Kong Wei, et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer[J]. Acta Optica Sinica, 2017, 37(2): 0201003. (in Chinese)

    [11] Zhang Yunshan, Gao Chunqing, Gao Mingwei, et al. Frequency stabilization of a single-frequency Q-switched Tm: YAG laser by using injection seeding technique[J]. Applied Optics, 2011, 50(21): 4232-4236.

    [12] SI-2000 seeder system operation and service manual[Z], 2008.

    [13] Operation and maintenance manual for SureliteTM lasers[Z], 2002.

    [14] Richard T White, He Yabai, Brian J Orr, et al. Control of frequency chirp in nanosecond-pulsed laser spectroscopy. 3. Spectrotemporal dynamics of an injection-seeded optical parametric oscillator[J]. J Opt Soc Am B, 2007, 24(10): 2601-2609.

    [15] Ge Ye. Research on 935 nm differential absorption lidar for atmospheric water vapor measurement[D]. Shanghai: Institute of Technical Physics, Chinese Academy of Sciences, 2016. (in Chinese)

    Hong Guanglie, Liang Xindong, Xiao Chunlei, Kong Wei, Shu Rong. High-power optical parametric oscillator at 935 nm for water-vapor differential absorption lidar transmitter[J]. Infrared and Laser Engineering, 2018, 47(12): 1230007
    Download Citation