• Advanced Photonics
  • Vol. 3, Issue 2, 026001 (2021)
Xiao Tian Yan1、†, Wenxuan Tang1、2、*, Jun Feng Liu1, Meng Wang1, Xin Xin Gao1, and Tie Jun Cui1、2、*
Author Affiliations
  • 1Southeast University, School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Nanjing, China
  • 2Southeast University, Institute of Electromagnetic Space, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.3.2.026001 Cite this Article Set citation alerts
    Xiao Tian Yan, Wenxuan Tang, Jun Feng Liu, Meng Wang, Xin Xin Gao, Tie Jun Cui. Glide symmetry for mode control and significant suppression of coupling in dual-strip SSPP transmission lines[J]. Advanced Photonics, 2021, 3(2): 026001 Copy Citation Text show less
    References

    [1] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [2] J. B. Pendry. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [3] W. X. Tang et al. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv. Opt. Mater., 7, 1800421(2019).

    [4] X. Shen et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. U. S. A., 110, 40-45(2013).

    [5] H. F. Ma et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons: broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev., 8, 146-151(2014).

    [6] L. Liu et al. Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films. J. Appl. Phys., 116, 013501(2014).

    [7] W. Zhang et al. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl. Phys. Lett., 106, 021104(2015).

    [8] H. C. Zhang et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies: amplification of spoof surface plasmon polaritons. Laser Photonics Rev., 9, 83-90(2015).

    [9] Q. Zhang et al. A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters. Sci. Rep., 5, 16531(2015).

    [10] X. Shen, T. J. Cui. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett., 102, 211909(2013).

    [11] Y. J. Zhou, B. J. Yang. A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system. Opt. Express, 22, 21589-21599(2014).

    [12] J. Y. Yin et al. Endfire radiations of spoof surface plasmon polaritons. Antennas Wireless Propag. Lett., 16, 597-600(2017).

    [13] Q. Zhang, Q. Zhang, Y. Chen. Spoof surface plasmon polariton leaky-wave antennas using periodically loaded patches above PEC and AMC ground planes. Antennas Wireless Propag. Lett., 16, 3014-3017(2017).

    [14] H. C. Zhang et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci. Appl., 9, 113(2020).

    [15] W. X. Tang et al. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line. Sci. Rep., 7, 41077(2017).

    [16] A. Kianinejad, Z. N. Chen, C.-W. Qiu. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation. IEEE Trans. Microwave Theory Tech., 64, 3078-3086(2016).

    [17] H. C. Zhang et al. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics, 2, 1333-1340(2015).

    [18] Y. Liang et al. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci. Rep., 5, 14853(2015).

    [19] A. Hessel et al. Propagation in periodically loaded waveguides with higher symmetries. Proc. IEEE, 61, 183-195(1973).

    [20] P. Padilla et al. Glide symmetry to prevent the lowest stopband of printed corrugated transmission lines. IEEE Microwave Wireless Comp. Lett., 28, 750-752(2018).

    [21] F. Ghasemifard, M. Norgren, O. Quevedo-Teruel. Twist and polar glide symmetries: an additional degree of freedom to control the propagation characteristics of periodic structures. Sci. Rep., 8, 11266(2018).

    [22] O. Quevedo-Teruel, M. Ebrahimpouri, M. Ng Mou Kehn. Ultrawideband metasurface lenses based on off-shifted opposite layers. Antennas Wireless Propag. Lett., 15, 484-487(2016).

    [23] L. Liu et al. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv. Sci., 5, 1800661(2018).

    [24] L. Wang, J. L. Gomez-Tornero, O. Quevedo-Teruel. Substrate integrated waveguide leaky-wave antenna with wide bandwidth via prism coupling. IEEE Trans. Microwave Theory Tech., 66, 3110-3118(2018).

    [25] H. C. Zhang et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics, 3, 139-146(2016).

    [26] G. Valerio et al. Glide-symmetric all-metal holey metasurfaces for low-dispersive artificial materials: modeling and properties. IEEE Trans. Microwave Theory Tech., 66, 3210-3223(2018).

    [27] A. Ma, Y. Li, X. Zhang. Coupled mode theory for surface plasmon polariton waveguides. Plasmonics, 8, 769-777(2013).

    Xiao Tian Yan, Wenxuan Tang, Jun Feng Liu, Meng Wang, Xin Xin Gao, Tie Jun Cui. Glide symmetry for mode control and significant suppression of coupling in dual-strip SSPP transmission lines[J]. Advanced Photonics, 2021, 3(2): 026001
    Download Citation