• Journal of Infrared and Millimeter Waves
  • Vol. 35, Issue 3, 275 (2016)
ZHANG Yong-Gang*, GU Yi, CHEN Xing-You, MA Ying-Jie, CAO Yuan-Ying, ZHOU Li, XI Su-Ping, DU Ben, LI Ai-Zhen, and LI Hao-Si-Bai-Yin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2016.03.005 Cite this Article
    ZHANG Yong-Gang, GU Yi, CHEN Xing-You, MA Ying-Jie, CAO Yuan-Ying, ZHOU Li, XI Su-Ping, DU Ben, LI Ai-Zhen, LI Hao-Si-Bai-Yin. InP-based antimony-free lasers and photodetectors in 2~3 μm band[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 275 Copy Citation Text show less
    References

    [1] Li A Z, Zhao Y, Zheng Y L, et.al. MBE growth and characterization of high quality InGaAsSb/AlGaAsSb strained multiple quantum well structures [J].J. Crystal Growth, 1997,175/176: 873876.

    [2] Zhang Y G, Li A Z, Zheng Y L, et.al. MBE grown 2.0 μm InGaAsSb/AlGaAsSb MQW ridge waveguide laser diodes [J].J. Crystal Growth, 2001, 227/228:582585.

    [3] Zhang Y G, Zheng Y L, Li A Z, et.al. Continuous wave and tunability of MBE grown 2.1 μm InGaAsSb /AlGaAsSb MQW lasers [J].Chin. Phys. Lett., 2006, 23(8):22622265.

    [4] Zhang Y G, Zhang X J, Zhu X R, et.al. Tunable diode laser absorption spectroscopy detection of N2O using antimonide laser and InGaAs photodiode [J].Chin. Phys. Lett.,2007, 24(8):23012303.

    [5] Zhang Y G, Tian Z B, Zhang X J, et.al. An innovative gas sensor with on-chip reference using monolithic twin lasers [J].Chin. Phys. Lett., 2007, 24(10):28392841.

    [6] Zhang Y G, Gu Y, Zhang X J, et.al.Gas sensor using a robust approach under time multiplexing scheme with a twin laser chip for absorption and reference [J].Chin. Phys. Lett.,2008, 25(9):32463249.

    [7] Yang R Q. Infrared laser based on intersubband transitions in quantum wells [J].Superlattices & Microstructure. 1995, 17(1):7783.

    [8] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers [J].Appl. Phys. Lett., 2005, 87:151109.

    [9] Devenson J, Barate D, Cathabard O, et.al. Very short wavelength (λ=3.1–3.3 μm ) quantum cascade lasers [J].Appl. Phys. Lett., 2006, 89:191115.

    [10] Cathabard O, Teissier R, Devenson J, et.al. Quantum cascade lasers emitting near 2.6 μm[J].Appl. Phys. Lett., 2010, 96:141110.

    [11] Baranov A N, Cuminal Y, Boissier G, et.al. Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 μm at room temperature [J].Electron. Lett. ,1996, 32: 2279.

    [12] Rossner K, Hummer M, Lehnhardt T, et.al. Continuous-wave operation of GaInAsSb/GaSb type-II ridge waveguide lasers emitting at 2.8 μm [J].IEEE Photon. Technol. Lett., 2006, 18(13):1424.

    [13] Shterengas L, Liang R, Kipshidze G, et.al. Type-I quantum well cascade diode lasers emitting near 3 μm [J].Appl. Phys. Lett., 2013, 103: 121108.

    [14] Laffaille P, Moreno J C, Teissier R, et.al. High temperature operation of short wavelength InAs-based quantum cascade lasers [J].AIP Advances, 2012, 2:022119

    [15] Li L, Jiang Y C, Ye H, et.al. Low-threshold InAs-based interband cascade lasers operating at high temperatures [J].Appl. Phys. Lett., 2015, 106:251102.

    [16] Forouhar S, Ksendzov A, Larsson A, et.al. InGaAs/ InGaAsP/InP strained layer quantum well lasers at ~2 μm. Electron. Lett.,1992, 28(15):14311342.

    [17] Bandyopadhyay N, Bai Y, Tsao S, et.al.Room temperature continuous wave operation of λ~3-3.2 μm quantum cascade lasers [J].Appl. Phys. Lett., 2012, 101: 241110.

    [18] Yang Q K, Manz C, Bronner W, et.al. Room-temperature short-wavelength (λ~3.7-3.9 μm) GaInAs/AlAsSb quantum-cascade lasers [J].Appl. Phys. Lett., 2006, 88:121127.

    [19] Revina D G, Cockburn J W, Steer M J, et.al. Wilson L R, Menzel S. InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm [J].Appl. Phys. Lett., 2007, 90:021108.

    [20] Sprengel S, Andrejew A, Vizbaras K, et.al. Type-II InP-based lasers emitting at 2.55 μm[J].Appl. Phys. Lett.,2012, 100(4): 041109.

    [21] Chang C H, Li Z L, Pan C H, et.al. Room-temperature mid-infrared “M”-type GaAsSb/InGaAs quantum well lasers on InP substrate [J].J. Appl. Phys., 2014, 115(6):063104.

    [22] Gu Y, Zhang Y G, InP-based antimony-free MQW lasers in 2-3 μm band [M]//Sergei P. Optoelectronics. Croatia, Rijeka: InTech. 2015, 83107.

    [23] Zhang Y G, Zhou P, Chen H Y, et.al. LPE growth of InAsPSb on InAs: melt composition, lattice mismatch and surface morphology [J]. Chin. J. Rare Metals, 1990, 9(1):4651.

    [24] Zhang Y G, Zhou P, San H K, et.al. InAsPSb/InAs mid-infrared photodetectors [J]. Chin. J. Semiconductors, 1992,13(10): 623628.

    [25] Li A Z, Zhong J Q, Zheng Y L, et.al. MBE growth, characterization and performance of InGaAsSb PIN detectors operating at 2.0 to 2.6 μm [J].J. Crystal Growth, 1995, 150:13751378.

    [26] Zhang Y G, Gu Y, Gas source MBE grown wavelength extending InGaAs photodetectors [M]// Gian-Franco D B. Advances in Photodiodes. Croatia, Rijeka: InTech. 2011, 349376.

    [27] Gu Y, Zhang Y G, Liu S. Strain compensated AlInGaAs/InGaAs/InAs triangular quantum wells for lasing wavelength beyond 2 μm [J].Chin. Phys. Lett.,2007, 24(11):32373240.

    [28] Gu Y, Zhang Y G. Properties of strain compensated symmetrical triangular quantum wells composed of InGaAs/InAs chirped superlattice grown using gas source molecular beam epitaxy [J].Chin. Phys. Lett., 2008; 25(2): 726729.

    [29] Gu Y, Zhang Y G, Wang K, et.al. Optimization of AlInGaAs/InGaAs/InAs strain compensated triangular quantum wells grown by gas source molecular beam epitaxy for laser applications in 2.1-2.4 μm range [J].J. Crystal. Growth, 2009, 311:19351938.

    [30] Gu Y, Wang K, Li Y Y, et.al. InP-based InGaAs/InAlGaAs digital alloy quantum well laser structure at 2 μm [J].Chin. Phys. B. 2010, 19:077304.

    [31] Cao Y Y, Gu Y, Zhang Y G, et.al. InAs/InGaAs digital alloy strain-compensated quantum well lasers [J].J. Infrared Millim. Waves, 2014, 33(3):213217.

    [32] Y. Gu, Y. G. Zhang, X. Y. Chen, et.al. Effects of well widths and well numbers on InP-based triangular quantum well lasers beyond 2.4 μm [J].J. Crystal Growth, 2015, 425: 376380.

    [33] Cao Y Y, Zhang Y G, Gu Y, et.al. Improved performance of 2.2 μm InAs/InGaAs QW lasers on InP by using triangular wells [J].IEEE Photon. Technol. Lett., 2014, 26(6):571574.

    [34] Gu Y, Zhang Y G, Cao Y Y, et.al. 2.4-μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature [J].Appl. Phys. Express, 2014, 7: 032701.

    [35] Gu Y, Zhang Y G, Wang K, et.al. InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm [J].Appl. Phys. Lett., 2011, 99: 081914.

    [36] Gu Y, Zhang Y G, Chen X Y, et.al. InAs/In0.83Al0.17As quantum wells on GaAs substrate with type-I emission at 2.9 μm [J].Appl. Phys. Lett., 2013, 102: 121110.

    [37] Gu Y, Chen X Y, Zhang Y G, et.al. Type-I mid-infrared InAs/InGaAs quantum well lasers on InP-based metamorphic InAlAs buffers [J].J. Phys. D: Appl. Phys., 2013, 46: 505103.

    [38] Cao Y Y, Zhang Y G, Gu Y, et.al. 2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers [J].Appl. Phys. Lett., 2013, 102: 201111.

    [39] Gu Y, Zhang Y G, Ma Y J, et.al. InP-based type-I quantum well lasers up to 2.9 μm at 230 K in pulsed mode on a metamorphic buffer [J].Appl. Phys. Lett., 2015, 106: 121102.

    [40] Zhang Y G, Hao G Q, Gu Y, et.al. 1.9 μm InGaAs PIN photodetectors grown by gas source MBE [J].Chin. Phys. Lett., 2005, 22(1):250253.

    [41] Zhang Y G, Gu Y, Zhu C, et.al. Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors [J].Infrared Physics & Technology, 2006, 47(3):257262.

    [42] Zhang Y G, Gu Y, Tian Z B, et.al. Wavelength extended 2.4 μm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations [J].Infrared Physics & Technology, 2008, 51(4): 316321.

    [43] Zhang Y G, Gu Y, Wang K, et.al. Properties of gas source molecular beam epitaxy grown wavelength extended InGaAs photodetector structures on linear graded InAlAs buffer [J].Semicon. Sci. Technol., 2008, 23(12):125029.

    [44] Zhang Y G, Gu Y, Tian Z B, et.al. Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination [J].Infrared Physics & Technology, 2009, 52(1): 5256.

    [45] Zhang Y G, Gu Y, Tian Z B, et.al. Performance of gas source MBE grown wavelength extended InGaAs photodetectors with different buffer structures [J].J. Crystal Growth, 2009, 311(7):18811884.

    [46] Li C, Zhang Y G, Wang K, et.al. Distinction investigation of InGaAs photodetectors cutoff at 2.9 μm [J].Infrared Physics & Technology, 2010, 53(3):173176.

    [47] Gu Y, Zhou L, Zhang Y G, et.al. Dark current suppression in metamorphic In0.83Ga0.17As photodetectors with In0.66Ga0.34As/InAs superlattice electron barrier [J].Appl. Phys. Express., 2015, 8: 022202.

    [48] Gu Y, Zhang Y G, Li C, et.al. Analysis and evaluation of uniformity of SWIR InGaAs FPA―Part I: material issues [J].Infrared Physics & Technology, 2011, 54(6): 497502.

    [49] Li C, Zhang Y G, Gu Y, et.al. Analysis and evaluation of uniformity of SWIR InGaAs FPA―Part II: processing issues and overall effects [J].Infrared Physics & Technology, 2013, 58(1): 6973.

    [50] Zhou L, Zhang Y G, Gu Y, et.al. Absorption coefficients of In0.8Ga0.2As at room temperature and 77 K [J].J. Alloys and Compounds,2013, 576: 336340.

    [51] Zhou L, Zhang Y G, Gu Y, et.al. Effects of material parameters on the temperature dependent spectral response of In0.83Ga0.17As photodetectors [J].J. Alloys and Compounds, 2015, 619(1):5257.

    [52] Ma Y J, Gu Y, Zhang Y G, et.al. Carrier scattering and relaxation dynamics in n-type In0:83Ga0:17As as a function of temperature and doping density [J].Journal of Materials Chemistry C, 2015, 3(12):28722880.

    ZHANG Yong-Gang, GU Yi, CHEN Xing-You, MA Ying-Jie, CAO Yuan-Ying, ZHOU Li, XI Su-Ping, DU Ben, LI Ai-Zhen, LI Hao-Si-Bai-Yin. InP-based antimony-free lasers and photodetectors in 2~3 μm band[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 275
    Download Citation