• Laser & Optoelectronics Progress
  • Vol. 57, Issue 6, 060002 (2020)
Sen Lin1、3、4 and Ying Zhao1、2、*
Author Affiliations
  • 1School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2Institute of Graduate, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 3State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 4Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • show less
    DOI: 10.3788/LOP57.060002 Cite this Article Set citation alerts
    Sen Lin, Ying Zhao. Review on Key Technologies of Target Exploration in Underwater Optical Images[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060002 Copy Citation Text show less
    References

    [1] Guo G, Wang X K, Xu H P. Review on underwater target detection, recognition and tracking based on sonar image[J]. Control and Decision, 33, 906-922(2018).

    [2] Sahu P, Gupta N, Sharma N. A survey on underwater image enhancement techniques[J]. International Journal of Computer Applications, 87, 19-23(2014).

    [3] Han M, Lyu Z Y, Qiu T et al. A review on intelligence dehazing and color restoration for underwater images[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-13(2018).

    [4] Kaeli J W, Singh H, Murphy C et al. Improving color correction for underwater image surveys. [C]∥OCEANS'11 MTS/IEEE KONA, September 19-22, 2011, Waikoloa, HI, USA. New York: IEEE, 12470441(2011).

    [5] Guo J C, Li C Y, Guo C L et al. Research progress of underwater image enhancement and restoration methods[J]. Journal of Image and Graphics, 22, 273-287(2017).

    [6] Moniruzzaman M. Islam S M S, Bennamoun M, et al. Deep learning on underwater marine object detection: a survey[M]. ∥Blanc-Talon J, Penne R, Philips W, et al. Advanced concepts for intelligent vision systems. Lecture notes in computer science. Cham: Springer, 10617, 150-160(2017).

    [7] Reza A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology, 38, 35-44(2004).

    [8] Qiao X, Bao J H, Zhang H et al. Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform[J]. Information Processing in Agriculture, 4, 206-213(2017).

    [9] Ghani A S A, Isa N A M. Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification[J]. Computers and Electronics in Agriculture, 141, 181-195(2017).

    [10] Ao J, Ma C B. Adaptive stretching method for underwater image color correction[J]. International Journal of Pattern Recognition and Artificial Intelligence, 32, 1854001(2018).

    [11] Huang D M, Wang Y, Song W et al. Underwater image enhancement method using adaptive histogram stretching in different color models[J]. Journal of Image and Graphics, 23, 640-651(2018).

    [12] Fu Q. Underwater image processing of low level vision[D]. Harbin: Harbin Engineering University, 1-112(2015).

    [13] Zhang S, Wang T, Dong J Y et al. Underwater image enhancement via extended multi-scale Retinex[J]. Neurocomputing, 245, 1-9(2017).

    [14] Li Q W, Zhu W Q, Cao M. Underwater color image enhancement using improved multi-scale Retinex and histogram linear quantification. [C]∥Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing - ICC '17, March 22-23, 2017, Cambridge, United Kingdom. New York: ACM, 189(2017).

    [15] Tang C, von Lukas U F, Vahl M et al. Efficient underwater image and video enhancement based on Retinex[J]. Signal, Image and Video Processing, 13, 1011-1018(2019).

    [16] Ancuti C, Ancuti C O, Haber T et al. Enhancing underwater images and videos by fusion. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 81-88(2012).

    [17] Ancuti C O. Ancuti C, de Vleeschouwer C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 27, 379-393(2018).

    [18] Dai C G, Lin M X, Wang Z et al. Color compensation based on bright channel and fusion for underwater image enhancement[J]. Acta Optica Sinica, 38, 1110003(2018).

    [19] Li C Y, Guo C L, Ren W Q et al. -01-11)[2019-07-08]. https:∥arxiv., org/abs/1901, 05495(2019).

    [20] Chen X Y, Yu J Z, Kong S H et al. -01-16)[2019-07-08]. https:∥arxiv., org/abs/1712, 00736(2018).

    [21] Hou M J, Liu R S, Fan X et al. Joint residual learning for underwater image enhancement. [C]∥2018 25th IEEE International Conference on Image Processing (ICIP), October 7-10, 2018, Athens, Greece. New York: IEEE, 4043-4047(2018).

    [22] Fabbri C, Islam M J. -01-11)[2019-07-08]. https:∥arxiv., org/abs/1801, 04011(2018).

    [23] Anwar S. -07-17)[2019-08-30]. https:∥arxiv., org/abs/1907, 07863(2019).

    [24] Li J, Skinner K A, Eustice R M et al. -10-26)[2019-07-08]. https:∥arxiv., org/abs/1702, 07392(2017).

    [25] Tang Z Q, Zhou B, Dai X Z et al. Underwater robot visual enhancements based on the improved DCP algorithm[J]. Robot, 40, 222-230(2018).

    [26] Xu Y, Zeng X B. Underwater image restoration based on red-dark channel prior and inverse filtering[J]. Laser & Optoelectronics Progress, 55, 021009(2018).

    [27] Xie H L, Peng G H, Wang F et al. Underwater image restoration based on background light estimation and dark channel prior[J]. Acta Optica Sinica, 38, 0101002(2018).

    [28] Yahya M F, Arshad M R. Tracking of multiple light sources using computer vision for underwater docking[J]. Procedia Computer Science, 76, 192-197(2015).

    [29] Susanto T, Mardiyanto R, Purwanto D. Development of underwater object detection method base on color feature. [C]∥2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), November 26-27, 2018, Surabaya, Indonesia. New York: IEEE, 254-259(2018).

    [30] Bazeille S, Quidu I, Jaulin L. Color-based underwater object recognition using water light attenuation[J]. Intelligent Service Robotics, 5, 109-118(2012).

    [31] Lin Y H, Chen S Y, Tsou C H. Development of an image processing module for autonomous underwater vehicles through integration of visual recognition with stereoscopic image reconstruction[J]. Journal of Marine Science and Engineering, 7, 107(2019).

    [32] Fatan M, Daliri M R, Shahri A M. Underwater cable detection in the images using edge classification based on texture information[J]. Measurement, 91, 309-317(2016).

    [33] Cheng K C, Cheng X M, Hao Q. A review of feature extraction technologies for plankton images. [C]∥Proceedings of the 2018 International Conference on Information Hiding and Image Processing-IHIP 2018, September 22-24, 2018, Manchester, United Kingdom. New York: ACM, 48-56(2018).

    [34] Li Y, Liu S J, Zhu P Q et al. Extraction of visual texture features of seabed sediments using an SVDD approach[J]. Ocean Engineering, 142, 501-506(2017).

    [35] Cheng E, Lin X Z, Chen Y et al. GLCM based no-reference perceptual blur metric for underwater blur image[J]. International Journal of Circuits, Systems and Signal Processing, 10, 291-296(2016).

    [36] Ani Brown Mary N, Dejey D. Classification of coral reef submarine images and videos using a novel Z with tilted Z local binary pattern (Z⊕TZLBP)[J]. Wireless Personal Communications, 98, 2427-2459(2018).

    [37] Huang P X, Boom B J, Fisher R B. Underwater live fish recognition using a balance-guaranteed optimized tree[M]. ∥Lee K M, Matsushita Y, Rehg J M, et al. Computer vision-ACCV 2012. Lecture notes in computer science. Berlin, Heidelberg: Springer, 7724, 422-433(2013).

    [38] Tharwat A, Hemedan A A, Hassanien A E et al. A biometric-based model for fish species classification[J]. Fisheries Research, 204, 324-336(2018).

    [39] Li J, Eustice R M, Johnson-Roberson M. High-level visual features for underwater place recognition. [C]∥2015 IEEE International Conference on Robotics and Automation (ICRA), May 26-30, 2015, Seattle, WA, USA. New York: IEEE, 3652-3659(2015).

    [40] Rizzini D L, Kallasi F, Oleari F et al. Investigation of vision-based underwater object detection with multiple datasets[J]. International Journal of Advanced Robotic Systems, 12, 77(2015).

    [41] Villon S, Chaumont M, Subsol G et al. Coral reef fish detection and recognition in underwater videos by supervised machine learning: comparison between deep learning and HOG+SVM methods[M]. ∥Blanc-Talon J, Distante C, Philips W, et al. Advanced concepts for intelligent vision systems. Lecture notes in computer science. Cham: Springer, 10016, 160-171(2016).

    [42] Cao Z, Principe J C, Ouyang B et al. Marine animal classification using combined CNN and hand-designed image features. [C]∥OCEANS 2015 - MTS/IEEE Washington, October 19-22, 2015, Washington, DC, USA. New York: IEEE, 15798739(2015).

    [43] Salman A, Siddiqui S A, Shafait F et al. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system[J]. ICES Journal of Marine Science, fsz025(2019).

    [44] Siddiqui S A, Salman A, Malik M I et al. Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data[J]. ICES Journal of Marine Science, 75, 374-389(2018).

    [45] Sun X, Shi J Y, Liu L P et al. Transferring deep knowledge for object recognition in low-quality underwater videos[J]. Neurocomputing, 275, 897-908(2018).

    [46] Chuang M C, Hwang J N, Williams K. A feature learning and object recognition framework for underwater fish images[J]. IEEE Transactions on Image Processing, 25, 1862-1872(2016).

    [47] Li X, Shang M, Qin H W et al. Fast accurate fish detection and recognition of underwater images with Fast R-CNN. [C]∥OCEANS 2015 - MTS/IEEE Washington, October 19-22, 2015, Washington, DC, USA. New York: IEEE, 15798821(2015).

    [48] Mandal R, Connolly R M, Schlacherz T A et al. -07-16)[2019-07-08]. https:∥arxiv., org/abs/1807, 05838(2018).

    [49] Lu H M, Li Y J, Uemura T et al. FDCNet: filtering deep convolutional network for marine organism classification[J]. Multimedia Tools and Applications, 77, 21847-21860(2018).

    [50] Christensen J H, Mogensen L V, Galeazzi R et al. Detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks. [C]∥2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), November 6-9, 2018, Porto, Portugal. New York: IEEE, 18740228(2018).

    [51] Sung M, Yu S C, Girdhar Y. Vision based real-time fish detection using convolutional neural network. [C]∥OCEANS 2017 - Aberdeen, June 19-22, 2017, Aberdeen, United Kingdom. New York: IEEE, 17290648(2017).

    [52] Pedersen M, Haurum J B, Gade R et al. Detection of marine animals in a new underwater dataset with varying visibility. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 16-20, 2019, Long Beach, California, USA. New York: IEEE, 18-26(2019).

    [53] Hsiao Y H, Chen C C, Lin S I et al. Real-world underwater fish recognition and identification, using sparse representation[J]. Ecological Informatics, 23, 13-21(2014).

    [54] Xiao J X, Hays J, Ehinger K A et al. SUN database: large-scale scene recognition from abbey to zoo. [C]∥2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA. New York: IEEE, 3485-3492(2010).

    [55] Oleari F, Kallasi F, Rizzini D L et al. An underwater stereo vision system: from design to deployment and dataset acquisition. [C]∥OCEANS 2015 - Genova, May 18-21, 2015, Genova, Italy. New York: IEEE, 15473467(2015).

    [56] Wang J H, Zhao M, Zou L et al. Fish tracking based on improved TLD algorithm in real-world underwater environment[J]. Marine Technology Society Journal, 53, 80-89(2019).

    [57] Zheng H C, Mao X, Chen L J et al. Adaptive edge-based mean shift for drastic change gray target tracking[J]. Optik, 126, 3859-3867(2015).

    [58] Chuang M C, Hwang J N, Ye J H et al. Underwater fish tracking for moving cameras based on deformable multiple kernels[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 2467-2477(2017).

    [59] Zhang K H, Liu Q S, Wu Y et al. Robust visual tracking via convolutional networks without training[J]. IEEE Transactions on Image Processing, 25, 1779-1792(2016).

    [60] Huang R J, Tsao C Y, Kuo Y P et al. Fast visual tracking based on convolutional networks[J]. Sensors, 18, 2405(2018).

    [61] Huang R J, Lai Y C, Tsao C Y et al. Applying convolutional networks to underwater tracking without training. [C]∥2018 IEEE International Conference on Applied System Invention (ICASI), April 13-17, 2018, Chiba, Japan. New York: IEEE, 342-345(2018).

    [62] Liu L, Ouyang W, Wang X et al. -08-22)[2019-08-30]. https:∥arxiv.gg363., site/abs/1809, 02165(2019).

    Sen Lin, Ying Zhao. Review on Key Technologies of Target Exploration in Underwater Optical Images[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060002
    Download Citation