• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230005 (2020)
Yang Liu1, Yang Haibo1, Zhang Jiakang1, and Li Fei1、*
Author Affiliations
  • 1[in Chinese]
  • 1Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010011, China
  • show less
    DOI: 10.3788/LOP57.230005 Cite this Article Set citation alerts
    Yang Liu, Yang Haibo, Zhang Jiakang, Li Fei. Review on Determination of Nutrients and Heavy Metals in Soils and Plants by Laser-Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230005 Copy Citation Text show less
    References

    [1] Lodge J P. Jr. The heavy elements: chemistry, environmental impact and health effects[J]. Atmospheric Environment Part A: General Topics, 25, 1733(1991).

    [2] Villas-Boas P R, Franco M A, Martin-Neto L et al. Applications of laser-induced breakdown spectroscopy for soil analysis, part I: review of fundamentals and chemical and physical properties[J]. European Journal of Soil Science, 71, 789-804(2020).

    [3] Miziolek A W, Palleschi V, Schechter I[M]. Laser-induced breakdown spectroscopy (LIBS)(2006).

    [4] Winefordner J D, Gornushkin I B, Correll T L et al. Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star[J]. Journal of Analytical Atomic Spectrometry, 19, 1061-1083(2004).

    [5] Brech F, Cross L. Optical microemission stimulated by a ruby laser[J]. Applied Spectroscopy, 16, 59-64(1962).

    [6] Beldjilali S, Borivent D, Mercadier L et al. Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 65, 727-733(2010).

    [7] Cremers D A, Radziemski L J. Handbook of laser-induced breakdown spectroscopy[M]. 2th ed. New Jersey: John Wiley & Sons Ltd.(2013).

    [8] Lin Z X, Li J, Liu L M et al. Laser-induced breakdown spectroscopy for analysis of soil elements[J]. High Power Laser and Particle Beams, 21, 817-820(2009).

    [9] Bousquet B, Sirven J B, Canioni L. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 1582-1589(2007).

    [10] Pontes M J C, Cortez J, Galvão R K H et al. Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain[J]. Analytica Chimica Acta, 642, 12-18(2009).

    [11] Yu K Q, He Y, Liu F. Discriminant analysis of soil type by laser-induced breakdown spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 31, 1-7(2015).

    [12] Meng D S, Zhao N J, Ma M J et al. Rapid soil classification with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 37, 241-246(2017).

    [13] Jantzi S C, Almirall J R. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS)[J]. Analytical and Bioanalytical Chemistry, 400, 3341-3351(2011).

    [14] Sun C, Tian Y, Gao L et al. Machine learning allows calibration models to predict trace element concentration in soils with generalized LIBS spectra[J]. Scientific Reports, 9, 11363(2019).

    [15] Sugito H, Khumaeni A, Binu Q M. Detection of heavy metal containment of soil pollution due to waste of paper industry using Nd∶YAG laser induced breakdown spectroscopy. [C]∥ The 4th International Conference on Applied Physics and Materials Application, Sep. 18-20, 2019, North Sumatera Province, Indonesia. [S.l.:s.n.], 1428(2019).

    [16] Owsik J, Janucki J, Jach K et al. LIBS system for elemental analysis of soil samples[J]. Proceedings of SPIE, 5710, 138-148(2005).

    [17] Gu Y H, Zhao N J, Ma M J et al. Mapping analysis of heavy metal elements in polluted soils using laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 38, 982-989(2018).

    [18] Hu Y, Fricke W, Schmidhalter U. Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution[J]. Functional Plant Biology, 32, 973-985(2005).

    [19] Gondal M A, Habibullah Y B, Baig U et al. Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS[J]. Talanta, 152, 341-352(2016).

    [20] Baskali-Bouregaa N, Milliand M L, Mauffrey S et al. Tea geographical origin explainedby LIBS elemental profile combined to isotopic information[J]. Talanta, 211, 120674(2020).

    [21] Rao G F, Huang L, He X W et al. Comparison of tea variety discriminating models based on laser induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 55, 023002(2018).

    [22] Xu X J, Wang X S, Li A Z et al. Fast classification of tea varieties based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 46, 0311003(2019).

    [23] Rao G F, Huang L, Liu M H et al. Origin identification of navel orange based on laser induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 55, 093003(2018).

    [24] Atta B M, Saleem M, Haq S et al. Determination of zinc and iron in wheat using laser-induced breakdown spectroscopy[J]. Laser Physics Letters, 15, 125603(2018).

    [25] Juvé V, Portelli R, Boueri M et al. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1047-1053(2008). http://www.sciencedirect.com/science/article/pii/S0584854708002528

    [26] Assion A, Wollenhaupt M, Haag L et al. Femtosecond laser-induced-breakdown spectrometry for C a2+ analysis of biological samples with high spatial resolution[J]. Applied Physics B, 77, 391-397(2003).

    [27] Samek O, Lambert J, Hergenröder R et al. Femtosecond laser spectrochemical analysis of plant samples[J]. Laser Physics Letters, 3, 21-25(2006).

    [28] Jeon J S, Choi S H, Lee J Y et al. Revealing the spatial distribution of inorganic elements in rice grains[J]. Bulletin of the Korean Chemical Society, 35, 3289-3293(2014).

    [29] Kaiser J, Samek O, Reale L et al. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy[J]. Microscopy Research and Technique, 70, 147-153(2007). http://onlinelibrary.wiley.com/doi/10.1002/jemt.20394/abstract

    [30] Galiová M, Kaiser J, Novotny K et al. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum L. leaves[J]. Microscopy Research and Technique, 74, 845-852(2011).

    [31] Akhtar M, Jabbar A, Mehmood S et al. Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 148, 143-151(2018).

    [32] Akhtar M, Jabbar A, Ahmed N et al. Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field[J]. Applied Physics B, 125, 1-11(2019).

    [33] Dong D M, Zheng W G, Zhao C J et al. Determination of potassium in farmland soil using laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 33, 785-789(2013).

    [34] Lu C P, Wang L S, Hu H Y et al. Analysis of total nitrogen and total phosphorus in soil using laser-induced breakdown spectroscopy[J]. Chinese Optics Letters, 11, 053004(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ130425000026SoVrXu

    [35] Gornushkin S, Gornushkin I B, Anzano J M et al. Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples[J]. Applied Spectroscopy, 56, 433-436(2002).

    [36] Guo G M, Niu G H, Shi Q et al. Multi-element quantitative analysis of soils by laser induced breakdown spectroscopy (LIBS) coupled with univariate and multivariate regression methods[J]. Analytical Methods, 11, 3006-3013(2019).

    [37] Yu K Q, Zhao Y R, Liu F et al. Laser-induced breakdown spectroscopy for simultaneous quantitative analysis of multi-elements in soil[J]. Spectroscopy and Spectral Analysis, 37, 2879-2884(2017).

    [38] Wang T, He M J, Shen T T et al. Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy:a case study in Eastern China[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 149, 300-312(2018).

    [39] Lin Y Z, Yao M Y, Chen T B et al. Detection of Cu and Cr in the soil of navel orange plantation in Gannan by LIBS[J]. Laser & Optoelectronics Progress, 50, 053002(2013).

    [40] Senesi G S. Dell’Aglio M, Gaudiuso R, et al. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium[J]. Environmental Research, 109, 413-420(2009).

    [41] Ying L N, Zhou W D. Comparative analysis of multiple chemometrics methods in application of laser-induced breakdown spectroscopy for quantitative analysis of soil elements[J]. Acta Optica Sinica, 38, 1214002(2018).

    [42] Zaytsev S M, Krylov I N, Popov A M et al. Accuracy enhancement of a multivariate calibration for lead determination in soils by laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 140, 65-72(2018). http://www.sciencedirect.com/science/article/pii/S0584854717303877

    [43] Eppler A S, Cremers D A, Hickmott D D et al. Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 50, 1175-1181(1996).

    [44] Theriault G A. Application of LIBS to in-situ assessment of metal-contaminated soils[J]. Proceedings of SPIE, 3535, 141-145(1999).

    [45] Trevizan L C, Santos D. Jr, Samad R E, et al. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 369-377(2009).

    [46] Pouzar M, Cernohorsky T. Pr u°šová M, et al. LIBS analysis of crop plants[J]. Journal of Analytical Atomic Spectrometry, 24, 953-957(2009).

    [47] Ranulfi A C, Senesi G S, Caetano J B et al. Nutritional characterization of healthy and Aphelenchoides besseyi infected soybean leaves by laser-induced breakdown spectroscopy (LIBS)[J]. Microchemical Journal, 141, 118-126(2018).

    [48] Peng J Y, Liu F, Shen T T et al. Comparative study of the detection of chromium content in rice leaves by 532 nm and 1064 nm laser-induced breakdown spectroscopy[J]. Sensors, 18, 621(2018).

    [49] Praher B, Palleschi V, Viskup R et al. Calibration free laser-induced breakdown spectroscopy of oxide materials[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 65, 671-679(2010).

    [50] Zhang L, Sun Y, Hou J J et al. Investigation and performance evaluation of optically thin laser-induced breakdown spectroscopy without self-absorption[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 47, 124201(2017).

    [51] Ghoreyshi S E, Shirvani-Mahdavi H, Shoursheini S Z. A distinct approach to laser plasma spectroscopy through internal reference standard method with peak intensity-based self-absorption correction[J]. Applied Physics B, 125, 1-11(2019).

    Yang Liu, Yang Haibo, Zhang Jiakang, Li Fei. Review on Determination of Nutrients and Heavy Metals in Soils and Plants by Laser-Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230005
    Download Citation