• Photonics Research
  • Vol. 11, Issue 4, 600 (2023)
Jiangwei Yan1、2, Xudong Yu1、2, Zheng Vitto Han1、2, Tongcang Li3, and Jing Zhang1、2、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
  • show less
    DOI: 10.1364/PRJ.471547 Cite this Article Set citation alerts
    Jiangwei Yan, Xudong Yu, Zheng Vitto Han, Tongcang Li, Jing Zhang. On-demand assembly of optically levitated nanoparticle arrays in vacuum[J]. Photonics Research, 2023, 11(4): 600 Copy Citation Text show less
    References

    [1] Z.-Q. Yin, A. A. Geraci, T. Li. Optomechanics of levitated dielectric particles. Int. J. Mod. Phys. B, 27, 1330018(2013).

    [2] J. Millen, T. S. Monteiro, R. Pettit, A. N. Vamivakas. Optomechanics with levitated particles. Rep. Prog. Phys., 83, 026401(2020).

    [3] C. Gonzalez-Ballestero, M. Aspelmeyer, L. Novotny, R. Quidant, O. Romero-Isart. Levitodynamics: levitation and control of microscopic objects in vacuum. Science, 374, eabg3027(2021).

    [4] A. A. Geraci, S. B. Papp, J. Kitching. Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett., 105, 101101(2010).

    [5] L.-M. Zhou, K.-W. Xiao, J. Chen, N. Zhao. Optical levitation of nanodiamonds by doughnut beams in vacuum. Laser Photon. Rev., 11, 1600284(2017).

    [6] Y. Zheng, L.-M. Zhou, Y. Dong, C.-W. Qiu, X.-D. Chen, G.-C. Guo, F.-W. Sun. Robust optical-levitation-based metrology of nanoparticle’s position and mass. Phys. Rev. Lett., 124, 223603(2020).

    [7] D. Carney, G. Krnjaic, D. C. Moore, C. A. Regal, G. Afek, S. Bhave, B. Brubaker, T. Corbitt, J. Cripe, N. Crisosto, A. Geraci, S. Ghosh, J. G. E. Harris, A. Hook, E. W. Kolb, J. Kunjummen, R. F. Lang, T. Li, T. Lin, Z. Liu, J. Lykken, L. Magrini, J. Manley, N. Matsumoto, A. Monte, F. Monteiro, T. Purdy, C. J. Riedel, R. Singh, S. Singh, K. Sinha, J. M. Taylor, J. Qin, D. J. Wilson, Y. Zhao. Mechanical quantum sensing in the search for dark matter. Quantum Sci. Technol., 6, 024002(2021).

    [8] J. Li, I. M. Haghighi, N. Malossi, S. Zippilli, D. Vitali. Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics. New J. Phys., 17, 103037(2015).

    [9] J. Zhang, T. Zhang, J. Li. Probing spontaneous wave-function collapse with entangled levitating nanospheres. Phys. Rev. A, 95, 012141(2017).

    [10] A. Bassi, K. Lochan, S. Satin, T. P. Singh, H. Ulbricht. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys., 85, 471-527(2013).

    [11] T. Weiss, O. Romero-Isart. Quantum motional state tomography with nonquadratic potentials and neural networks. Phys. Rev. Res., 1, 033157(2019).

    [12] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, M. Aspelmeyer. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).

    [13] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S. Hong, N. Kiesel, A. Kugi, M. Aspelmeyer. Real-time optimal quantum control of mechanical motion at room temperature. Nature, 595, 373-377(2021).

    [14] F. Tebbenjohanns, M. L. Mattana, M. Rossi, M. Frimmer, L. Novotny. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature, 595, 378-382(2021).

    [15] T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, T. Li. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett., 117, 123604(2016).

    [16] F. Monteiro, S. Ghosh, E. C. van Assendelft, D. C. Moore. Optical rotation of levitated spheres in high vacuum. Phys. Rev. A, 97, 051802(2018).

    [17] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [18] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [19] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, T. Li. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol., 15, 89-93(2020).

    [20] Y. Jin, J. Yan, S. J. Rahman, J. Li, X. Yu, J. Zhang. 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photon. Res., 9, 1344-1350(2021).

    [21] S. Kuhn, A. Kosloff, B. A. Stickler, F. Patolsky, K. Hornberger, M. Arndt, J. Millen. Full rotational control of levitated silicon nanorods. Optica, 4, 356-360(2017).

    [22] J. Bang, T. Seberson, P. Ju, J. Ahn, Z. Xu, X. Gao, F. Robicheaux, T. Li. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res., 2, 043054(2020).

    [23] F. van der Laan, F. Tebbenjohanns, R. Reimann, J. Vijayan, L. Novotny, M. Frimmer. Sub-kelvin feedback cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett., 127, 123605(2021).

    [24] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, A. Browaeys. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354, 1021-1023(2016).

    [25] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, M. D. Lukin. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354, 1024-1027(2016).

    [26] M. A. Norcia, A. W. Young, W. J. Eckner, E. Oelker, J. Ye, A. M. Kaufman. Seconds-scale coherence on an optical clock transition in a tweezer array. Science, 366, 93-97(2019).

    [27] M. A. Norcia, A. W. Young, A. M. Kaufman. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X, 8, 041054(2018).

    [28] L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K.-K. Ni, J. M. Doyle. An optical tweezer array of ultracold molecules. Science, 365, 1156-1158(2019).

    [29] K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara. Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett., 16, 1463-1465(1991).

    [30] E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrum., 72, 1810-1816(2001).

    [31] M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia. Creation and manipulation of three-dimensional optically trapped structures. Science, 296, 1101-1103(2002).

    [32] J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Opt. Commun., 207, 169-175(2002).

    [33] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [34] Y. Arita, E. M. Wright, K. Dholakia. Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica, 5, 910-917(2018).

    [35] J. Rieser, M. A. Ciampini, H. Rudolph, N. Kiesel, K. Hornberger, B. A. Stickler, M. Aspelmeyer, U. Delić. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science, 377, 987-990(2022).

    [36] Y. Arita, G. D. Bruce, E. M. Wright, S. H. Simpson, P. Zemánek, K. Dholakia. All-optical sub-kelvin sympathetic cooling of a levitated microsphere in vacuum. Optica, 9, 1000-1002(2022).

    [37] F. Monteiro, S. Ghosh, A. G. Fine, D. C. Moore. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys. Rev. A, 96, 063841(2017).

    [38] Z. Gong, Y.-L. Pan, G. Videen, C. Wang. Optical trapping and manipulation of single particles in air: principles, technical details, and applications. J. Quant. Spectrosc. Radiat. Transfer, 214, 94-119(2018).

    [39] V. Svak, J. Flajšmanová, L. Chvátal, M. Šiler, A. Jonáš, J. Ježek, S. H. Simpson, P. Zemánek, O. Brzobohatý. Stochastic dynamics of optically bound matter levitated in vacuum. Optica, 8, 220-229(2021).

    [40] J. Vijayan, Z. Zhang, J. Piotrowski, D. Windey, F. van der Laan, M. Frimmer, L. Novotny. Scalable all-optical cold damping of levitated nanoparticles. arXiv(2022).

    [41] S. Liu, Z.-Q. Yin, T. Li. Prethermalization and nonreciprocal phonon transport in a levitated optomechanical array. Adv. Quantum Technol., 3, 1900099(2020).

    [42] X. Yu, Y. Jin, H. Shen, Z. Han, J. Zhang. Hermitian and non-Hermitian normal-mode splitting in an optically-levitated nanoparticle. Quantum Front., 1, 6(2022).

    [43] J. Yan, X. Yu, Z. V. Han, T. Li, J. Zhang. Supplement for on-demand assembly of optically-levitated nanoparticle arrays in vacuum(2022).

    [44] J. Yan, X. Yu, Z. V. Han, T. Li, J. Zhang. Supplement for on-demand assembly of optically-levitated nanoparticle arrays in vacuum(2022).

    [45] Y. Jin, X. Yu, J. Zhang. Polarization-dependent center-of-mass motion of an optically levitated nanosphere. J. Opt. Soc. Am. B, 36, 2369-2377(2019).

    [46] Y. Jin, X. Yu, J. Zhang. Optically levitated nanosphere with high trapping frequency. Sci. China Phys. Mech. Astron., 61, 114221(2018).

    [47] J. Yan, X. Yu, Z. V. Han, T. Li, J. Zhang. Supplement for on-demand assembly of optically-levitated nanoparticle arrays in vacuum(2022).

    [48] J. Gieseler, J. R. Gomez-Solano, A. Magazzù, I. P. Castillo, L. P. García, M. Gironella-Torrent, X. Viader-Godoy, F. Ritort, G. Pesce, A. V. Arzola, K. Volke-Sepúlveda, G. Volpe. Optical tweezers—from calibration to applications: a tutorial. Adv. Opt. Photon., 13, 74-241(2021).

    [49] Y. Jin, J. Yan, S. J. Rahman, X. Yu, J. Zhang. Interference of the scattered vector light fields from two optically levitated nanoparticles. Opt. Express, 30, 20026-20037(2022).

    [50] M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, L. Novotny. Controlling the net charge on a nanoparticle optically levitated in vacuum. Phys. Rev. A, 95, 061801(2017).

    [51] F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, R. Quidant. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing. Nano Lett., 19, 6711-6715(2019).

    [52] Z. Fu, S. Zhu, Y. Dong, X. Chen, X. Gao, H. Hu. Force detection sensitivity spectrum calibration of levitated nanomechanical sensor using harmonic coulomb force. Opt. Laser Eng., 152, 106957(2022).

    [53] T. Li, S. Kheifets, M. G. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys., 7, 527-530(2011).

    Jiangwei Yan, Xudong Yu, Zheng Vitto Han, Tongcang Li, Jing Zhang. On-demand assembly of optically levitated nanoparticle arrays in vacuum[J]. Photonics Research, 2023, 11(4): 600
    Download Citation