• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 2, 2150002 (2021)
Lei Wang1、* and Hui Huang2
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering Harbin Engineering University 145 Nantong Avenue, Harbin 150001, P. R. China
  • 2School of Basic Medical Sciences Harbin Medical University 157 Baojian Road, Harbin 150081, P. R. China
  • show less
    DOI: 10.1142/s1793545821500024 Cite this Article
    Lei Wang, Hui Huang. Inertial gradient method for fluorescence molecular tomography[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150002 Copy Citation Text show less
    References

    [1] C. Darne, Y. Lu, E. M. Sevick-Muraca, "Small animal fluorescence and bioluminescence tomography: A review of approaches, algorithms and technology update," Phys. Med. Biol. 59, R1 (2014).

    [2] V. Ntziachristos, "Fluorescence molecular imaging," Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

    [3] S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, K. D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with laplacian- type regularization," Opt. Express 15, 4066– 4082 (2007).

    [4] K. Liu, X. Jiang, Y. Deng, "First-order approximation of fluorescence excitation-transmission to accelerate fluorescence molecular tomography image reconstruction," Opt. Lett. 44(13), 3222–3225 (2019).

    [5] Y. He, X. Cao, F. Liu, J. Luo, J. Bai, "Influence of limited-projection on fluorescence molecular tomography," J. Innov. Opt. Health Sci. 5, 1250020 (2012).

    [6] A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081– 3094 (2003).

    [7] S. R. Arridge, J. C. Schotland, "Optical tomography: forward and inverse problems," Inverse Probl. 25, 123010 (2009).

    [8] D. Zhu, C. Li, "Accelerated image reconstruction in fluorescence molecular tomography using a nonuniform updating scheme with momentum and ordered subsets methods," J. Biomed. Opt. 21, 016004 (2016).

    [9] H. Guo, J. Yu, X. He, Y. Hou, F. Dong, S. Zhang, "Improved sparse reconstruction for fluorescence molecular tomography with ‘1=2 regularization," Biomed. Opt. Express 6, 1648–1664 (2015).

    [10] W. Zou, J. Wang, D. D. Feng, "Image reconstruction of fluorescent molecular tomography based on the simplified matrix system," J. Opt. Soc. Am. A 30(8), 1464–1475 (2013).

    [11] J. Shi, X. Cao, F. Liu, B. Zhang, J. Luo, J. Bai, "Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion," J. Opt. Soc. Am. A 30(3), 437–447 (2013).

    [12] J. Yu, J. Cheng, Y. Hou, X. He, "Sparse reconstruction for fluorescence molecular tomography via a fast iterative algorithm," J. Innov. Opt. Health Sci. 7, 1450008 (2014).

    [13] A. Behrooz, H.-M. Zhou, A. A. Eftekhar, A. Adibi, "Total variation regularization for 3d reconstruction in fluorescence tomography: experimental phantom studies," Appl. Opt. 51, 8216–8227 (2012).

    [14] W. Xie, Y. Deng, D. Yan, X. Yang, Q. Luo, "Sparsity-promoting Bayesian approximation error method for compensating for the mismodeling of optical properties in fluorescence molecular tomography," Opt. Lett. 42, 3024–3027 (2017).

    [15] Z. Wu, X. Wang, J. Yu, H. Yi, X. He, "Synchronization-based clustering algorithm for reconstruction of multiple reconstructed targets in fluorescence molecular tomography," J. Opt. Soc. Am. A 35(2), 328–335 (2018).

    [16] H. Yi, P. Jiao, X. Li, J. Peng, X. He, "Three-way decision based reconstruction frame for fluorescence molecular tomography," J. Opt. Soc. Am. A 35(11), 1814–1822 (2018).

    [17] S. Jiang, J. Liu, Y. An, G. Zhang, J. Ye, Y. Mao, K. He, C. Chi, J. Tian, "Novel ‘2;1-norm optimization method for fluorescence molecular tomography reconstruction," Biomed. Opt. Express 7, 2342–2359 (2016).

    [18] T. Correia, M. Koch, A. Ale, V. Ntziachristos, S. Arridge, "Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography-part 2: Image reconstruction," Phys. Med. Biol. 61, 1452 (2016).

    [19] L. Zhao, H. Yang, W. Cong, G. Wang, X. Intes, "‘p regularization for early gate fluorescence molecular tomography," Opt. Lett. 39, 4156–4159 (2014).

    [20] A. Chambolle, T. Pock, "An introduction to continuous optimization for imaging," Acta Numer. 25, 161–319 (2016).

    [21] J. Ye, Y. Du, Y. An, Y. Mao, S. Jiang, W. Shang, K. He, X. Yang, K. Wang, C. Chi et al., "Sparse reconstruction of fluorescence molecular tomography using variable splitting and alternating direction scheme," Mol. Imaging. Biol. 20, 37–46 (2018).

    [22] X. He, H. Guo, J. Yu, X. Zhang, Y. Hou, "Effective and robust approach for fluorescence molecular tomography based on cosamp and SP3 model," J. Innov. Opt. Health Sci. 9, 1650024 (2016).

    [23] A. Beck, M. Teboulle, "A fast iterative shrinkagethresholding algorithm for linear inverse problems," SIAM J. Imaging Sci. 2, 183–202 (2009).

    [24] A. Chambolle, T. Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging," J. Math. Imaging Vis. 40, 120–145 (2011).

    [25] A. B. Taylor, J. M. Hendrickx, F. Glineur, "Exact worst-case performance of first-order methods for composite convex optimization," SIAM J. Optim. 27, 1283–1313 (2017).

    [26] B. O'Donoghue, E. Candes, "Adaptive restart for accelerated gradient schemes," Found. Comput. Math. 15, 715–732 (2015).

    [27] H. Attouch, Z. Chbani, J. Fadili, H. Riahi, "Firstorder optimization algorithms via inertial systems with hessian driven damping," arXiv:1907.10536.

    [28] J.-C. Baritaux, K. Hassler, M. Bucher, S. Sanyal, M. Unser, "Sparsity-driven reconstruction for fdot with anatomical priors," IEEE Trans. Med. Imaging 30, 1143–1153 (2011).

    [29] D. Wang, X. Liu, Y. Chen, J. Bai, "A novel finiteelement- based algorithm for fluorescence molecular tomography of heterogeneous media," IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009).

    [30] V. Ntziachristos, R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation," Opt. Lett. 26, 893–895 (2001).

    [31] L. Lian, Y. Deng, W. Xie, G. Xu, X. Yang, Z. Zhang, Q. Luo, "Enhancement of the localization and quantitative performance of fluorescence molecular tomography by using linear nborn method," Opt. Express 25(3), 2063–2079 (2017).

    [32] M. Schweiger, S. R. Arridge, "The toasttt software suite for forward and inverse modeling in optical tomography," J. Biomed. Opt. 19, 040801 (2014).

    [33] P. L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, H. Wolkowicz, Eds., pp. 185–212, Springer, New York (2011).

    [34] P. L. Combettes, V. R. Wajs, "Signal recovery by proximal forward-backward splitting," Multiscale Model. Simul. 4, 1168–1200 (2005).

    [35] H. Attouch, A. Cabot, "Convergence of a relaxed inertial forward–backward algorithm for structured monotone inclusions," Appl. Math. Optim. 80, 547– 598 (2019).

    [36] H. Attouch, J. Peypouquet, "Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators," Math. Program. 174, 391–432 (2019).

    [37] S. R. Arridge, M. Schweiger, "A gradient-based optimisation scheme for optical tomography," Opt. Express 2, 213–226 (1998).

    [38] M. Schweiger, S. R. Arridge, I. Nissila, "Gaussnewton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365– 2386 (2005).

    [39] R. P. K. Jagannath, P. K. Yalavarthy, "Nonquadratic penalization improves near-infrared diffuse optical tomography," J. Opt. Soc. Am. A 30(8), 1516–1523 (2013).

    [40] C. B. Shaw, P. K. Yalavarthy, "Performance evaluation of typical approximation algorithms for nonconvex ‘p-minimization in diffuse optical tomography," J. Opt. Soc. Am. A 31(4), 852–862 (2014).

    [41] P. C. Hansen, D. P. O'Leary, "The use of the Lcurve in the regularization of discrete ill-posed problems," SIAM J. Sci. Comput. 14, 1487–1503 (1993).

    [42] A. Bentley, J. E. Rowe, H. Dehghani, "Single pixel hyperspectral bioluminescence tomography based on compressive sensing," Biomed. Opt. Express 10 (11), 5549–5564 (2019).

    [43] K. Liu, X. Yang, D. Liu, C. Qin, J. Liu, Z. Chang, M. Xu, J. Tian, "Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy," J. Opt. Soc. Am. A 27(6), 1413–1423 (2010).

    [44] J. Yu, Q. Li, H. Wang, "Source reconstruction for bioluminescence tomography via ‘1=2 regularization," J. Innov. Opt. Health Sci. 11, 1750014 (2018).

    [45] M. Bhatt, S. Gutta, P. K. Yalavarthy, "Exponential filtering of singular values improves photoacoustic image reconstruction," J. Opt. Soc. Am. A 33(9), 1785–1792 (2016).

    Lei Wang, Hui Huang. Inertial gradient method for fluorescence molecular tomography[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150002
    Download Citation