• Laser & Optoelectronics Progress
  • Vol. 59, Issue 12, 1210014 (2022)
Dengqiang Zhang*, Xiaohan Liu, and Yanwei Pang
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP202259.1210014 Cite this Article Set citation alerts
    Dengqiang Zhang, Xiaohan Liu, Yanwei Pang. Reconstruction of Magnetic Resonance Images Based on Dual-Domain Crossed Codec Network[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1210014 Copy Citation Text show less
    References

    [1] Zhang Z Z, Romero A, Muckley M J et al. Reducing uncertainty in undersampled MRI reconstruction with active acquisition[C], 2049-2053(2019).

    [2] [M]. MRI基础. 尹建忠, 译(2004).

         Hashemi R H, Hashemi R H, Bradley W G, Bradley W G, Lisanti C J, Lisanti C J[M]. MRI: the basic. Yin J Z, Transl(2004).

    [3] Pineda L, Basu S, Romero A et al. Active MR k-space sampling with reinforcement learning[M]. Martel A L, Abolmaesumi P, Stoyanov D, et al. Medical image computing and computer assisted intervention-MICCAI 2020, 12262, 23-33(2020).

    [4] Zbontar J, Knoll F, Sriram A et al. fastMRI: an open dataset and benchmarks for accelerated MRI[EB/OL]. https://arxiv.org/abs/1811.08839

    [5] Schlemper J, Caballero J, Hajnal J V et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Transactions on Medical Imaging, 37, 491-503(2017).

    [6] Deshmane A, Gulani V, Griswold M A et al. Parallel MR imaging[J]. Journal of Magnetic Resonance Imaging, 36, 55-72(2012).

    [7] Pruessmann K P, Weiger M, Scheidegger M B et al. SENSE: sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 42, 952-962(1999).

    [8] Uecker M, Lai P, Murphy M J et al. ESPIRiT: an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA[J]. Magnetic Resonance in Medicine, 71, 990-1001(2014).

    [9] Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 58, 1182-1195(2007).

    [10] Wang Y D, Song Y, Xie H B et al. Reconstruction of under-sampled magnetic resonance image based on convolutional neural network[J]. Chinese Journal of Magnetic Resonance Imaging, 9, 453-459(2018).

    [11] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [12] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [13] Hammernik K, Klatzer T, Kobler E et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magnetic Resonance in Medicine, 79, 3055-3071(2018).

    [14] Liang D, Cheng J, Ke Z W et al. Deep MRI reconstruction: unrolled optimization algorithms meet neural networks[EB/OL]. http://arxiv.org/abs/1907.11711

    [15] Chaudhari A S, Fang Z N, Kogan F et al. Super-resolution musculoskeletal MRI using deep learning[J]. Magnetic Resonance in Medicine, 80, 2139-2154(2018).

    [16] Wu Y, Ma Y J, Liu J et al. Self-attention convolutional neural network for improved MR image reconstruction[J]. Information Sciences, 490, 317-328(2019).

    [17] Golkov V, Dosovitskiy A, Sperl J I et al. Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans[J]. IEEE Transactions on Medical Imaging, 35, 1344-1351(2016).

    [18] Wang S S, Cheng H T, Ying L L et al. Deep complexMRI: exploiting deep residual network for fast parallel MR imaging with complex convolution[J]. Magnetic Resonance Imaging, 68, 136-147(2020).

    [19] Zhu B, Liu J Z, Cauley S F et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 555, 487-492(2018).

    [20] Zhou B, Zhou S K. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior[C], 4272-4281(2020).

    [21] Eo T, Jun Y, Kim T et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images[J]. Magnetic Resonance in Medicine, 80, 2188-2201(2018).

    [22] Mao X J, Shen C H, Yang Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[EB/OL]. https://arxiv.org/abs/1603.09056

    [23] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015, 9351, 234-241(2015).

    [24] Yang W J. Research on reconstruction algorithm of under Nyquist sampling and signal[D], 3-4(2016).

    [25] Schlemper J, Caballero J, Hajnal J V et al. A deep cascade of convolutional neural networks for MR image reconstruction[M]. Niethammer M, Styner M, Aylward S, et al. Information processing in medical imaging, 10265, 647-658(2017).

    Dengqiang Zhang, Xiaohan Liu, Yanwei Pang. Reconstruction of Magnetic Resonance Images Based on Dual-Domain Crossed Codec Network[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1210014
    Download Citation