• Acta Optica Sinica
  • Vol. 44, Issue 10, 1026003 (2024)
Weimin Wang1, Junlong Kou1、2、4、**, and Yanqing Lu1、3、4、*
Author Affiliations
  • 1School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, Jiangsu , China
  • 2School of Integrated Circuit, Nanjing University, Suzhou 215163, Jiangsu , China
  • 3College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, Jiangsu , China
  • 4Wujin-NJU Institute of Future Technology, Changzhou 213153, Jiangsu , China
  • show less
    DOI: 10.3788/AOS240428 Cite this Article Set citation alerts
    Weimin Wang, Junlong Kou, Yanqing Lu. Polarization Field in Momentum Space of Two-Dimensional Photonic Crystal Slabs (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026003 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [3] Bi Q H, Peng Y J, Chen R et al. Theory and application of bound states in the continuum in photonics[J]. Acta Optica Sinica, 43, 1623008(2023).

    [4] Yao J Q, Li J T, Zhang Y T et al. Bound states in continuum in periodic optical systems[J]. Chinese Optics, 16, 1-23(2023).

    [5] Chai R H, Liu W W, Cheng H et al. Bound states of continuum in optical artificial micro-nanostructures: fundamentals, developments and applications[J]. Acta Optica Sinica, 41, 0123001(2021).

    [6] Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum[J]. Science Bulletin, 64, 836-842(2019).

    [7] Özdemir Ş K, Rotter S, Nori F et al. Parity-time symmetry and exceptional points in photonics[J]. Nature Materials, 18, 783-798(2019).

    [8] Kang M, Liu T, Chan C T et al. Applications of bound states in the continuum in photonics[J]. Nature Reviews Physics, 5, 659-678(2023).

    [9] Wang F F, Yin X F, Zhang Z X et al. Fundamentals and applications of topological polarization singularities[J]. Frontiers in Physics, 10, 862962(2022).

    [10] Peng Y, Liao S L. Bound states in continuum and zero-index metamaterials: a review[EB/OL]. https:∥arxiv.org/abs/2007.01361

    [11] Liu W Z, Liu W, Shi L et al. Topological polarization singularities in metaphotonics[J]. Nanophotonics, 10, 1469-1486(2021).

    [12] Koshelev K, Favraud G, Bogdanov A et al. Nonradiating photonics with resonant dielectric nanostructures[J]. Nanophotonics, 8, 725-745(2019).

    [13] Xu G Z, Xing H Y, Xue Z Q et al. Recent advances and perspective of photonic bound states in the continuum[J]. Ultrafast Science, 3, 33(2023).

    [14] Azzam S I, Kildishev A V. Photonic bound states in the continuum: from basics to applications[J]. Advanced Optical Materials, 9, 2001469(2021).

    [15] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [16] Joseph S, Pandey S, Sarkar S et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications[J]. Nanophotonics, 10, 4175-4207(2021).

    [17] Ochiai T, Sakoda K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab[J]. Physical Review B, 63, 125107(2001).

    [18] SymmetrySakoda K.. degeneracy, and uncoupled modes in two-dimensional photonic lattices[J]. Physical Review B, 52, 7982-7986(1995).

    [19] Cerjan A, Jörg C, Vaidya S et al. Observation of bound states in the continuum embedded in symmetry bandgaps[J]. Science Advances, 7, eabk1117(2021).

    [20] Overvig A C, Malek S C, Carter M J et al. Selection rules for quasibound states in the continuum[J]. Physical Review B, 102, 035434(2020).

    [21] Chen Y, Li M J, Zhao M et al. Multiple quasibound states in the continuum of permittivity-asymmetric all-dielectric metasurface: group-theoretical description[J]. Optical Materials, 138, 113693(2023).

    [22] Sakoda K[M]. Optical properties of photonic crystals(2005).

    [23] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).

    [24] Chen W J, Chen Y T, Liu W. Singularities and Poincaré indices of electromagnetic multipoles[J]. Physical Review Letters, 122, 153907(2019).

    [25] Abujetas D R, Olmos-Trigo J, Sánchez-Gil J A. Tailoring accidental double bound states in the continuum in all-dielectric metasurfaces[J]. Advanced Optical Materials, 10, 2200301(2022).

    [26] Sadrieva Z, Frizyuk K, Petrov M et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 100, 115303(2019).

    [27] Chen W J, Chen Y T, Liu W. Multipolar conversion induced subwavelength high-Q Kerker supermodes with unidirectional radiations[J]. Laser & Photonics Reviews, 13, 1900067(2019).

    [28] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 65, 235112(2002).

    [29] Luo H Q, Liu L L, Xi Z et al. Dynamics of diverse polarization singularities in momentum space with far-field interference[J]. Physical Review A, 107, 013504(2023).

    [30] Hsu C W, Zhen B, Soljačić M et al. Polarization state of radiation from a photonic crystal slab[EB/OL]. https:∥arxiv.org/abs/1708.02197v1

    [31] Song Q J, Dai S W, Han D Z et al. PT symmetry induced rings of lasing threshold modes embedded with discrete bound states in the continuum[J]. Chinese Physics Letters, 38, 084203(2021).

    [32] Suh W, Wang Z, Fan S H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 40, 1511-1518(2004).

    [33] Zhao Z X, Guo C, Fan S H. Connection of temporal coupled-mode-theory formalisms for a resonant optical system and its time-reversal conjugate[J]. Physical Review A, 99, 033839(2019).

    [34] Guo Y, Xiao M, Fan S H. Topologically protected complete polarization conversion[J]. Physical Review Letters, 119, 167401(2017).

    [35] Yoda T, Notomi M. Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking[J]. Physical Review Letters, 125, 053902(2020).

    [36] Li J T, Yue Z, Li J et al. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum[J]. Optics & Laser Technology, 161, 109173(2023).

    [37] Doeleman H M, Monticone F, den Hollander W et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 12, 397-401(2018).

    [38] Chen W J, Chen Y T, Liu W. Line singularities and Hopf indices of electromagnetic multipoles[J]. Laser & Photonics Reviews, 14, 2000049(2020).

    [39] Ye W M, Gao Y, Liu J L. Singular points of polarizations in the momentum space of photonic crystal slabs[J]. Physical Review Letters, 124, 153904(2020).

    [40] Zhang Y W, Chen A, Liu W Z et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 120, 186103(2018).

    [41] Kang M, Zhang S P, Xiao M et al. Merging bound states in the continuum at off-high symmetry points[J]. Physical Review Letters, 126, 117402(2021).

    [42] Kang M, Mao L, Zhang S P et al. Merging bound states in the continuum by harnessing higher-order topological charges[J]. Light, Science & Applications, 11, 228(2022).

    [43] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [44] Zhao W, Wang W, Chen Z X et al. Evolution of degenerate pairs of bound states in the continuum with broken symmetry[J]. IEEE Photonics Journal, 16, 1-7(2024).

    [45] Liu W Z, Shi L, Chan C T et al. Momentum-space polarization fields in two-dimensional photonic-crystal slabs: physics and applications[J]. Chinese Physics B, 31, 104211(2022).

    [46] Liu W Z, Wang B, Zhang Y W et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 123, 116104(2019).

    [47] Liu X Y, Xia S Q, Jajtić E et al. Universal momentum-to-real-space mapping of topological singularities[J]. Nature Communications, 11, 1586(2020).

    [48] Wang Z X, Liang Y, Beck M et al. Topological charge of finite-size photonic crystal modes[J]. Physical Review B, 102, 045122(2020).

    [49] Hwang M S, Lee H C, Kim K H et al. Ultralow-threshold laser using super-bound states in the continuum[J]. Nature Communications, 12, 4135(2021).

    [50] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [51] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [52] Contractor R, Noh W, Redjem W et al. Scalable single-mode surface-emitting laser via open-Dirac singularities[J]. Nature, 608, 692-698(2022).

    [53] Wang Z Y, Liu X, Wang P Y et al. Continuous-wave operation of 1550 nm low-threshold triple-lattice photonic-crystal surface-emitting lasers[J]. Light: Science & Applications, 13, 44(2024).

    [54] Chen Z, Yin X, Jin J et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors[J]. Science Bulletin, 67, 359-366(2022).

    [55] Zeng Y X, Hu G W, Liu K P et al. Dynamics of topological polarization singularity in momentum space[J]. Physical Review Letters, 127, 176101(2021).

    [56] Yin X F, Jin J C, Soljačić M et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 580, 467-471(2020).

    [57] Yin X F, Inoue T, Peng C et al. Topological unidirectional guided resonances emerged from interband coupling[J]. Physical Review Letters, 130, 056401(2023).

    [58] Zhang Y J, Liu X G, Zhao R et al. Unidirectional asymmetry transmission based on quasi-accidental bound states in the continuum[J]. Physical Chemistry Chemical Physics, 25, 31869-31873(2023).

    [59] Xu W, Hong Q L, Liu P et al. High quality factor unidirectional guided resonances of a silicon-on-lithium niobate photonic crystal slab for a tunable Gires-Tournois interferometer[J]. Optics Letters, 48, 4761-4764(2023).

    [60] Chen J L, Chen Z X, Kou J L et al. Multifunctional imaging enabled by optical bound states in the continuum with broken symmetry[EB/OL]. https:∥arxiv.org/abs/2310.17184

    [61] Johnson S G, Fan S H, Villeneuve P R et al. Guided modes in photonic crystal slabs[J]. Physical Review B, 60, 5751-5758(1999).

    [62] Nye J F. Lines of circular polarization in electromagnetic wave fields[J]. Proceedings of the Royal Society of London A, 389, 279-290(1983).

    [63] Dennis M R. Polarization singularity anisotropy: determining monstardom[J]. Optics Letters, 33, 2572-2574(2008).

    [64] Schoonover R W, Visser T D. Polarization singularities of focused, radially polarized fields[J]. Optics Express, 14, 5733-5745(2006).

    [66] Kotlyar V V, Kovalev A A, Nalimov A G[M]. Topological charge of optical vortices(2022).

    [67] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [68] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [69] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [70] Resta R[M]. Geometry and topology in electronic structure theory(2022).

    [71] Xiao D, Chang M C, Niu Q. Berry phase effects on electronic properties[J]. Reviews of Modern Physics, 82, 1959-2007(2010).

    [72] Dresselhaus M S, Dresselhaus G, Jorio A[M]. Group theory: application to the physics of condensed matter(2008).

    [73] Guo C, Xiao M, Guo Y et al. Meron spin textures in momentum space[J]. Physical Review Letters, 124, 106103(2020).

    [74] Wang K D, Guan C Y, Wan S et al. Observing tunable evolutions of optical singularities by C2 symmetry breaking[J]. Physical Review B, 108, 165305(2023).

    [75] Che Z Y, Zhang Y B, Liu W Z et al. Polarization singularities of photonic quasicrystals in momentum space[J]. Physical Review Letters, 127, 043901(2021).

    [76] Wang P, Fu Q D, Konotop V V et al. Observation of localization of light in linear photonic quasicrystals with diverse rotational symmetries[J]. Nature Photonics, 18, 224-229(2024).

    [77] Jiang Q, Hu P, Wang J et al. General bound states in the continuum in momentum space[J]. Physical Review Letters, 131, 013801(2023).

    [78] Koshelev K L, Sadrieva Z F, Shcherbakov A A et al. Bound states in the continuum in photonic structures[J]. Physics-Uspekhi, 66, 494-517(2021).

    [79] Zhao M D, Fang K J. Mechanical bound states in the continuum for macroscopic optomechanics[J]. Optics Express, 27, 10138-10151(2019).

    [80] Chen A, Liu W Z, Zhang Y W et al. Observing vortex polarization singularities at optical band degeneracies[J]. Physical Review B, 99, 180101(2019).

    [81] Chong Y D, Wen X G, Soljačić M. Effective theory of quadratic degeneracies[J]. Physical Review B, 77, 235125(2008).

    [82] Zhou H Y, Peng C, Yoon Y et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points[J]. Science, 359, 1009-1012(2018).

    [83] Zhen B, Hsu C W, Igarashi Y et al. Spawning rings of exceptional points out of Dirac cones[J]. Nature, 525, 354-358(2015).

    [84] Chen W J, Yang Q D, Chen Y T et al. Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2019578118(2021).

    [85] Bai T R, Li Q, Wang Y Q et al. Terahertz vortex beam generator based on bound states in the continuum[J]. Optics Express, 29, 25270-25279(2021).

    [86] Wang J J, Zhao M X, Liu W Z et al. Shifting beams at normal incidence via controlling momentum-space geometric phases[J]. Nature Communications, 12, 6046(2021).

    [87] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    [88] Wang B, Liu W Z, Zhao M X et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 14, 623-628(2020).

    [89] Mohamed S, Wang J, Rekola H et al. Controlling topology and polarization state of lasing photonic bound states in continuum[J]. Laser & Photonics Reviews, 16, 2100574(2022).

    [90] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences, 44, 247-262(1956).

    [91] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A, 392, 45-57(1984).

    [92] Ling X H, Zhou X X, Huang K et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics, 80, 066401(2017).

    [93] Bliokh K Y, Gorodetski Y, Kleiner V et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect[J]. Physical Review Letters, 101, 030404(2008).

    [94] Wang J J, Shi L, Zi J. Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum[J]. Physical Review Letters, 129, 236101(2022).

    [95] Goos F, Hänchen H. Ein neuer und fundamentaler versuch zur totalreflexion[J]. Annalen Der Physik, 436, 333-346(1947).

    [96] Saito H, Neo Y, Matsumoto T et al. Giant and highly reflective Goos-Hänchen shift in a metal-dielectric multilayer Fano structure[J]. Optics Express, 27, 28629-28639(2019).

    [97] Imbert C. Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam[J]. Physical Review D, 5, 787-796(1972).

    [98] Luo H L, Zhou X X, Shu W X et al. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection[J]. Physical Review A, 84, 043806(2011).

    [99] Zhang X D, Liu Y L, Han J C et al. Chiral emission from resonant metasurfaces[J]. Science, 377, 1215-1218(2022).

    [100] Zhou Y, Zheng H Y, Kravchenko I I et al. Flat optics for image differentiation[J]. Nature Photonics, 14, 316-323(2020).

    [101] Zhu T F, Zhou Y H, Lou Y J et al. Plasmonic computing of spatial differentiation[J]. Nature Communications, 8, 15391(2017).

    [102] Cordaro A, Kwon H, Sounas D et al. High-index dielectric metasurfaces performing mathematical operations[J]. Nano Letters, 19, 8418-8423(2019).

    [103] Cotrufo M, Singh S, Arora A et al. Polarization imaging and edge detection with image-processing metasurfaces[J]. Optica, 10, 1331-1338(2023).

    [104] Kwon H, Cordaro A, Sounas D et al. Dual-polarization analog 2D image processing with nonlocal metasurfaces[J]. ACS Photonics, 7, 1799-1805(2020).

    [105] Gao P F, Lei G, Huang C Z. Dark-field microscopy: recent advances in accurate analysis and emerging applications[J]. Analytical Chemistry, 93, 4707-4726(2021).

    [106] Zhang T C, Dong K C, Li J C et al. Twisted Moiré photonic crystal enabled optical vortex generation through bound states in the continuum[J]. Nature Communications, 14, 6014(2023).

    Weimin Wang, Junlong Kou, Yanqing Lu. Polarization Field in Momentum Space of Two-Dimensional Photonic Crystal Slabs (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026003
    Download Citation