• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0100002 (2022)
Qingyu Yan, Yu Miao, Qiuyang Song, Xu Mingzhu, Guanxue Wang, and Xiumin Gao*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/LOP202259.0100002 Cite this Article Set citation alerts
    Qingyu Yan, Yu Miao, Qiuyang Song, Xu Mingzhu, Guanxue Wang, Xiumin Gao. Characteristic Analysis and Research Progress of Vortex Beam Produced by Optical Microcavity[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100002 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [2] Wang X L, Chen J, Li Y N et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 105, 253602(2010).

    [3] Liu S, Li P, Peng T et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Optics Express, 20, 21715-21721(2012).

    [4] Jiang X, Chen Y, Vienne G et al. All-fiber add-drop filters based on microfiber knot resonators[J]. Optics Letters, 32, 1710-1712(2007).

    [5] Chen Y, Ma Z, Yang Q et al. Compact optical short-pass filters based on microfibers[J]. Optics Letters, 33, 2565-2567(2008).

    [6] Wu Y, Zeng X, Hou C L et al. A tunable all-fiber filter based on microfiber loop resonator[J]. Applied Physics Letters, 92, 191112(2008).

    [7] Poon J K S, Scheuer J, Xu Y et al. Designing coupled-resonator optical waveguide delay lines[J]. Journal of the Optical Society of America B, 21, 1665-1673(2004).

    [8] Melloni A, Morichetti F, Ferrari C et al. Continuously tunable 1 byte delay in coupled-resonator optical waveguides[J]. Optics Letters, 33, 2389-2391(2008).

    [9] Rabiei P, Steier W H, Zhang C et al. Polymer micro-ring filters and modulators[J]. Journal of Lightwave Technology, 20, 1968-1975(2002).

    [10] Tazawa H, Kuo Y H, Dunayevskiy I et al. Ring resonator-based electrooptic polymer traveling-wave modulator[J]. Journal of Lightwave Technology, 24, 3514-3519(2006).

    [11] Almeida V R, Lipson M. Optical bistability on a silicon chip[J]. Optics Letters, 29, 2387-2389(2004).

    [12] Dumeige Y, Féron P. Dispersive tristability in microring resonators[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 72, 066609(2005).

    [13] Först M, Niehusmann J, Plötzing T et al. High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators[J]. Optics Letters, 32, 2046-2048(2007).

    [14] Wen Q, Qin J H, Zhou H et al. Controllable excitation of whispering gallery mode micro-rod resonator[J]. Acta Optica Sinica, 40, 1919001(2020).

    [15] Jia Z N, Zhang T T, Li Z H et al. Fabrication of Fabry-Pérot optical microcavity array based on CO2 laser processing[J]. Laser & Optoelectronics Progress, 57, 231404(2020).

    [16] Ibrahim T A, Amarnath K, Kuo L C et al. Photonic logic NOR gate based on two symmetric microring resonators[J]. Optics Letters, 29, 2779-2781(2004).

    [17] Xu Q F, Lipson M. All-optical logic based on silicon micro-ring resonators[J]. Optics Express, 15, 924-929(2007).

    [18] Caulfield H J, Soref R A, Vikram C S. Universal reconfigurable optical logic with silicon-on-insulator resonant structures[J]. Photonics and Nanostructures-Fundamentals and Applications, 5, 14-20(2007).

    [19] Yalcin A, Popat K C, Aldridge J C et al. Optical sensing of biomolecules using microring resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 148-155(2006).

    [20] de Vos K, Bartolozzi I, Schacht E et al. Silicon-on-insulator microring resonator for sensitive and label-free biosensing[J]. Optics Express, 15, 7610-7615(2007).

    [21] Wang Y P, Wang X H, Wang P. Identifying single cell types via whispering gallery mode optical microcavities[J]. Chinese Journal of Lasers, 47, 0207028(2020).

    [22] Chao C Y, Fung W, Guo L J. Polymer microring resonators for biochemical sensing applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 134-142(2006).

    [23] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [24] Zou C L, Dong C H, Cui J M et al. Whispering gallery mode optical micro- resonator: foundation and application[J]. Scientia Sinica Physica, Mechanica & Astronomica, 42, 1155-1175(2012).

    [25] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [26] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [27] Painter O, Lee R K, Scherer A et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 284, 1819-1821(1999).

    [28] Sun S, Kim H, Solomon G S et al. Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity[C], FF1K.7(2014).

    [29] Robinson S, Nakkeeran R. Investigation on two dimensional photonic crystal resonant cavity based bandpass filter[J]. Optik, 123, 451-457(2012).

    [30] Mahmoud M Y, Bassou G, Taalbi A et al. Optical channel drop filters based on photonic crystal ring resonators[J]. Optics Communications, 285, 368-372(2012).

    [31] Zhao C Y, Gan X T, Liu S et al. Generation of vector beams in planar photonic crystal cavities with multiple missing-hole defects[J]. Optics Express, 22, 9360-9367(2014).

    [32] Richtmyer R D. Dielectric resonators[J]. Journal of Applied Physics, 10, 391-398(1939).

    [33] Garrett C G B, Kaiser W, Bond W L. Stimulated emission into optical whispering modes of spheres[J]. Physical Review, 124, 1807-1809(1961).

    [34] McCall S L, Levi A F J, Slusher R E et al. Whispering-gallery mode microdisk lasers[J]. Applied Physics Letters, 60, 289-291(1992).

    [35] Levi A F J, McCall S L, Pearton S J et al. Room temperature operation of submicrometre radius disk laser[J]. Electronics Letters, 29, 1666-1667(1993).

    [36] Miao P, Zhang Z F, Sun J B et al. Orbital angular momentum microlaser[J]. Science, 353, 464-467(2016).

    [37] Ma X, Chen Q A, Lu Q Y et al. Grating-assisted microcylinder surface-emitting laser[J]. Journal of Lightwave Technology, 34, 4999-5006(2016).

    [38] Ma X, Zheng S, Chen Q A et al. High-speed directly modulated cylindrical vector beam lasers[J]. ACS Photonics, 6, 3261-3270(2019).

    [39] Miyai E, Sakai K, Okano T et al. Lasers producing tailored beams[J]. Nature, 441, 946(2006).

    [40] Hwang J K, Ryu H Y, Song D S et al. Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm[J]. Applied Physics Letters, 76, 2982-2984(2000).

    [41] Abe H, Narimatsu M, Watanabe T et al. Living-cell imaging using a photonic crystal nanolaser array[J]. Optics Express, 23, 17056-17066(2015).

    [42] Xiong Z G. Generation and modulation of OAM modes based on photonic crystal microcavity[J]. Journal of Nanjing Xiaozhuang University, 35, 14-17(2019).

    [43] Fujita M, Baba T. Microgear laser[J]. Applied Physics Letters, 80, 2051-2053(2002).

    [44] Cai X L, Wang J W, Strain M J et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012).

    [45] Strain M J, Cai X L, Wang J W et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters[J]. Nature Communications, 5, 4856(2014).

    [46] Li H L, Strain M J, Meriggi L et al. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams[J]. Applied Physics Letters, 107, 051102(2015).

    [47] Mock A, Sounas D, Alù A. Tunable orbital angular momentum radiation from angular-momentum-biased microcavities[J]. Physical Review Letters, 121, 103901(2018).

    [48] Zambon N C, St-Jean P, Milićević M et al. Optically controlling the emission chirality of microlasers[J]. Nature Photonics, 13, 283-288(2019).

    [49] Zhang Z F, Qiao X D, Midya B et al. Tunable topological charge vortex microlaser[J]. Science, 368, 760-763(2020).

    [50] Cognée K G, Doeleman H M, Lalanne P et al. Generation of pure OAM beams with a single state of polarization by antenna-decorated microdisk resonators[J]. ACS Photonics, 7, 3049-3060(2020).

    [51] Iwahashi S, Kurosaka Y, Sakai K et al. Higher-order vector beams produced by photonic-crystal lasers[J]. Optics Express, 19, 11963-11968(2011).

    [52] Chen M L N, Jiang L J, Sha W E I. Generation of orbital angular momentum by a point defect in photonic crystals[J]. Physical Review Applied, 10, 014034(2018).

    [53] Schulz S A, Machula T, Karimi E et al. Integrated multi vector vortex beam generator[J]. Optics Express, 21, 16130-16141(2013).

    [54] Suzuki S, Shuto K, Hibino Y. Integrated-optic ring resonators with two stacked layers of silica waveguide on Si[J]. IEEE Photonics Technology Letters, 4, 1256-1258(1992).

    [55] Hayenga W E, Parto M, Ren J H et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points[J]. ACS Photonics, 6, 1895-1901(2019).

    [56] Zhang D K, Feng X, Huang Y D. Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip[J]. Optics Express, 20, 26986-26995(2012).

    [57] Wang Y, Feng X, Zhang D et al. Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices[J]. Scientific Reports, 5, 10958(2015).

    [58] Xiao Q S, Klitis C, Li S M et al. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings[J]. Optics Express, 24, 3168-3176(2016).

    [59] Shao Z K, Zhang Y F, Li S M et al. Integrated orbital angular momentum emitters based on silicon nitride photonic platform[C], AF4E.4(2016).

    [60] Xu Y H. Integrated the OAM beam emitter model simulation analysis of purity[J]. Electronic Test, 48-50(2015).

    [61] Chen X L. Research of integrated photonic devices to generate and measure orbital angular momentum beams[D], 1-68(2017).

    [62] Shao Z K, Zhu J B, Zhang Y F et al. On-chip switchable radially and azimuthally polarized vortex beam generation[J]. Optics Letters, 43, 1263-1266(2018).

    [63] Zheng S, Ma X, Chen Q A et al. Concentric microcavities for cylindrical vector beam lasers[J]. Optics Letters, 45, 2211-2214(2020).

    [64] Zhang J, Sun C Z, Xiong B et al. An InP-based vortex beam emitter with monolithically integrated laser[J]. Nature Communications, 9, 2652(2018).

    [65] Li R, Feng X, Zhang D K et al. Radially polarized orbital angular momentum beam emitter based on shallow-ridge silicon microring cavity[J]. IEEE Photonics Journal, 6, 1-10(2014).

    [66] Li S M, Ding Y H, Guan X W et al. Compact high-efficiency vortex beam emitter based on a silicon photonics micro-ring[J]. Optics Letters, 43, 1319-1322(2018).

    [67] Iwahashi S, Sakai K, Kurosaka Y et al. Centered-rectangular lattice photonic-crystal surface-emitting lasers[J]. Physical Review B, 85, 035304(2012).

    Qingyu Yan, Yu Miao, Qiuyang Song, Xu Mingzhu, Guanxue Wang, Xiumin Gao. Characteristic Analysis and Research Progress of Vortex Beam Produced by Optical Microcavity[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0100002
    Download Citation