• Acta Optica Sinica
  • Vol. 43, Issue 21, 2106004 (2023)
Chenglei Fan1, Binbin Luo1、*, Decao Wu1, Xue Zou1、2, Hongcheng Rao1, Fumin Zhou1, Ling Huang1, Shenghui Shi1, and Xinyu Hu1
Author Affiliations
  • 1Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
  • 2School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    DOI: 10.3788/AOS231313 Cite this Article Set citation alerts
    Chenglei Fan, Binbin Luo, Decao Wu, Xue Zou, Hongcheng Rao, Fumin Zhou, Ling Huang, Shenghui Shi, Xinyu Hu. Flexible Bionic Microstructure Tactile Sensor Based on Micro-Nano Optical Fiber[J]. Acta Optica Sinica, 2023, 43(21): 2106004 Copy Citation Text show less
    References

    [1] Lee Y J, Ahn J H. Biomimetic tactile sensors based on nanomaterials[J]. ACS Nano, 14, 1220-1226(2020).

    [2] Boutry C M, Negre M, Jorda M et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics[J]. Science Robotics, 3, eaau6914(2018).

    [3] Tee B C K, Chortos A, Berndt A et al. A skin-inspired organic digital mechanoreceptor[J]. Science, 350, 313-316(2015).

    [4] Zhang C, Ye W B, Zhou K et al. Bioinspired artificial sensory nerve based on nafion memristor[J]. Advanced Functional Materials, 29, 1808783(2019).

    [5] Lee W W, Tan Y J, Yao H C et al. A neuro-inspired artificial peripheral nervous system for scalable electronic skins[J]. Science Robotics, 4, eaax2198(2019).

    [6] Oh H, Yi G C, Yip M et al. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics[J]. Science Advances, 6, eabd7795(2020).

    [7] Wang Y, Wu H T, Xu L et al. Hierarchically patterned self-powered sensors for multifunctional tactile sensing[J]. Science Advances, 6, eabb9083(2020).

    [8] Larson C, Peele B, Li S et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 351, 1071-1074(2016).

    [9] Li L H, Chen Z G, Hao M M et al. Moisture-driven power generation for multifunctional flexible sensing systems[J]. Nano Letters, 19, 5544-5552(2019).

    [10] Pikul J H, Li S, Bai H et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins[J]. Science, 358, 210-214(2017).

    [11] Tong L M. Micro-nano optical fiber technology: recent research progress[J]. Acta Optica Sinica, 42, 1706001(2022).

    [12] Yang Q, Luo B B, Gu Z P et al. Graphene oxide microfiber-based immunosensor for rabies virus[J]. Laser & Optoelectronics Progress, 60, 0728004(2023).

    [13] Li Y J, Luo B B, Zou X et al. Sensing characteristics of optical vernier of double-helix micro-nano optical fiber coupler[J]. Chinese Journal of Lasers, 50, 1406001(2023).

    [14] Li J H, Chen J H, Xu F. Sensitive and wearable optical microfiber sensor for human health monitoring[J]. Advanced Materials Technologies, 3, 1800296(2018).

    [15] Zhang L, Pan J, Zhang Z et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers[J]. Opto-Electronic Advances, 3, 190022(2020).

    [16] Pan J, Zhang Z, Jiang C P et al. A multifunctional skin-like wearable optical sensor based on an optical micro-/ nanofibre[J]. Nanoscale, 12, 17538-17544(2020).

    [17] Jiang C P, Zhang Z, Pan J et al. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping[J]. Advanced Materials Technologies, 6, 2100285(2021).

    [18] Tang Y, Liu H T, Pan J et al. Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination[J]. ACS Applied Materials & Interfaces, 13, 4560-4566(2021).

    [19] Yao N, Wang X Y, Ma S Q et al. Single optical microfiber enabled tactile sensor for simultaneous temperature and pressure measurement[J]. Photonics Research, 10, 2040-2046(2022).

    [20] Liu H T, Song X D, Wang X Y et al. Optical microfibers for sensing proximity and contact in human–machine interfaces[J]. ACS Applied Materials & Interfaces, 14, 14447-14454(2022).

    [21] Ma S Q, Wang X Y, Li P et al. Optical micro/nano fibers enabled smart textiles for human-machine interface[J]. Advanced Fiber Materials, 4, 1108-1117(2022).

    [22] Wang S P, Wang X Y, Wang S et al. Optical-nanofiber-enabled gesture-recognition wristband for human-machine interaction with the assistance of machine learning[J]. Advanced Intelligent Systems, 5, 2200412(2023).

    [23] Tang Y, Yu L T, Pan J et al. Optical nanofiber skins for multifunctional humanoid tactility[J]. Advanced Intelligent Systems, 5, 2200203(2023).

    [24] Kumar K S, Chen P Y, Ren H L. A review of printable flexible and stretchable tactile sensors[J]. Research, 2019, 3018568(2019).

    [25] Park J, Kim M, Lee Y et al. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli[J]. Science Advances, 1, e1500661(2015).

    [26] Sundaram S. How to improve robotic touch[J]. Science, 370, 768-769(2020).

    [27] Liu K J, Fan J H, Luo B B et al. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer[J]. Optics Express, 29, 32983-32995(2021).

    Chenglei Fan, Binbin Luo, Decao Wu, Xue Zou, Hongcheng Rao, Fumin Zhou, Ling Huang, Shenghui Shi, Xinyu Hu. Flexible Bionic Microstructure Tactile Sensor Based on Micro-Nano Optical Fiber[J]. Acta Optica Sinica, 2023, 43(21): 2106004
    Download Citation