• Journal of Semiconductors
  • Vol. 40, Issue 1, 012801 (2019)
Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, and Yuji Zhao
Author Affiliations
  • School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
  • show less
    DOI: 10.1088/1674-4926/40/1/012801 Cite this Article
    Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors, 2019, 40(1): 012801 Copy Citation Text show less
    References

    [1] H Sun, K H Li, C G T Castanedo et al. HCl flow-induced phase change of α-, β-, and ε- Ga2O3 films grown by MOCVD. Cryst Growth Design, 18, 2370(2018).

    [2] H Sun, C G T Castanedo, K Liu et al. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl Phys Lett, 111, 162105(2017).

    [3] Z Zhang, E Farzana, A Arehart et al. Deep level defects throughout the bandgap of (010) β- Ga2O3 detected by optically and thermally stimulated defect spectroscopy. Appl Phys Lett, 108, 052105(2016).

    [4] Q He, W Mu, H Dong et al. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics. Appl Phys Lett, 110, 093503(2017).

    [5] H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 140, A316(1965).

    [6] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [7] M Higashiwaki, K Sasaki, T Kamimura et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 103, 123511(2013).

    [8] T Oishi, Y Koga, K Harada et al. High-mobility β-Ga2O3 ( 01) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl Phys Express, 8, 031101(2015).

    [9] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A(2016).

    [10] T Oishi, K Harada, Y Koga et al. Conduction mechanism in highly doped β-Ga2O3 single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes. Jpn J Appl Phys, 55, 030305(2016).

    [11] M Higashiwaki, K Konishi, K Sasaki et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 108, 133503(2016).

    [12] S Oh, M A Mastro, M J Tadjer et al. Solar-blind metal–semiconductor–metal photodetectors based on an exfoliated β-Ga2O3 micro-flake. ECS J Solid State Sci Technol, 6, Q79(2017).

    [13] M Higashiwaki, K Sasaki, A Kuramata et al. Development of gallium oxide power devices. Phys Status Solidi A, 211, 21(2014).

    [14] K Sasaki, A. Kuramata, T Masui et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone moleular beam epitaxy. Appl Phys Express, 5, 035502(2012).

    [15] S Ahn, F Ren, L Yuan et al. Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3. ECS J Solid State Sci Technol, 6, P68(2017).

    [16] K Sasaki, D Wakimoto, Q T Thieu et al. First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett, 38, 783(2017).

    [17] J Yang, S Ahn, F Ren et al. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3. Appl Phys Lett, 110, 192101(2017).

    [18] K Sasaki, M Higashiwaki, A Kuramata et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates. IEEE Electron Device Lett, 34, 493(2013).

    [19] J Yang, S Ahn, F Ren et al. High breakdown voltage ( 01) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 38, 906(2017).

    [20] B Song, A K Verma, K Nomoto et al. Vertical Ga2O3 Schottky barrier diodes on single-crystal β-Ga2O3 ( 01) substrates. Device Research Conference (DRC), 2016, 1(2016).

    [21] H Fu, X Huang, H Chen et al. Ultra-low turn-on voltage and on-resistance vertical GaN-on-GaN Schottky power diodes with high mobility double drift layers. Appl Phys Lett, 111, 152102(2017).

    [22] F Iucolano, F. Roccaforte, F Giannazzo et al. Barrier inhomogeneity and electrical properties of Pt/Ga N Shottky contacts. J Appl Phys, 102, 113701(2007).

    [23] Y Son, R L Peterson. The effects of localized tail states on charge transport mechanisms in amorphous zinc tin oxide Schottky diodes. Semicond Sci Technol, 32, 12L(2017).

    [24] D H Lee, K Nomura, T Kamiya et al. Diffusion-limited a-IGZO/Pt Schottky junction fabricated at 200 °C on a flexible substrate. IEEE Electron Device Lett, 32, 1695(2011).

    [25] J H Werner, H H Güttler. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 69, 1522(1991).

    [26] H von Wenckstern, G Biehne, R A Rahman et al. Mean barrier height of Pd Schottky contacts on ZnO thin films. Appl Phys Lett, 88, 092102(2006).

    [27] H Fu, I Baranowski, X Huang et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 38, 1286(2017).

    [28] E Miller, E Yu, P Waltereit et al. Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy. Appl Phys Lett, 84, 535(2004).

    [29] F Padovani, R Stratton. Field and thermionic-field emission in Schottky barriers. Solid-State Electron, 9, 695(1966).

    [30] E Miller, X Dang, E Yu. Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J Appl Phys, 88, 5951(2000).

    [31] H Iwano, S Zaima, Y Yasuda. Hopping conduction and localized states in p-Si wires formed by focused ion beam implantations. J Vac Sci Technol B, 16, 2551(1998).

    [32] W Lu, L Wang, S Gu et al. Analysis of reverse leakage current and breakdown voltage in GaN and InGaN/GaN Schottky barriers. IEEE Trans Electron Devices, 58, 1986(2011).

    [33] H Fu, X Huang, H Chen et al. Fabrication and characterization of ultra-wide bandgap AlN-based Schottky diodes on sapphire by MOCVD. IEEE J Electron Devices Soc, 5, 518(2017).

    [34] T Loh, H Nguyen, R Murthy et al. Selective epitaxial germanium on silicon-on-insulator high speed photodetectors using low-temperature ultrathin Si0.8Ge0.2 buffer. Appl Phys Lett, 91, 073503(2007).

    [35] D Yu, C Wang, B L Wehrenberg et al. Variable range hopping conduction in semiconductor nanocrystal solids. Phys Rev Lett, 92, 216802(2004).

    Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors, 2019, 40(1): 012801
    Download Citation