• Journal of Semiconductors
  • Vol. 40, Issue 1, 012801 (2019)
Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, and Yuji Zhao
Author Affiliations
  • School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
  • show less
    DOI: 10.1088/1674-4926/40/1/012801 Cite this Article
    Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors, 2019, 40(1): 012801 Copy Citation Text show less

    Abstract

    Beta-phase gallium oxide (β-Ga2O3) Schottky barrier diodes were fabricated on highly doped single-crystal substrates, where their temperature-dependent electrical properties were comprehensively investigated by forward and reverse current density – voltage and capacitance – voltage characterization. Both the Schottky barrier height and the ideality factor showed a temperature-dependence behavior, revealing the inhomogeneous nature of the Schottky barrier interface caused by the interfacial defects. With a voltage-dependent Schottky barrier incorporated into thermionic emission theory, the inhomogeneous barrier model can be further examined. Furthermore, the reverse leakage current was found to be dominated by the bulk leakage currents due to the good material and surface quality. Leakage current per distance was also obtained. These results can serve as important references for designing efficient β-Ga2O3 electronic and optoelectronic devices on highly doped substrates or epitaxial layers.
    $J = {A^*}{T^2}\exp \left( { - \frac{{q{\phi _{{\rm{eff}}}}}}{{kT}}} \right)\left[ {\exp \left( {\frac{{qV}}{{nkT}}} \right) - 1} \right],$ (1)

    View in Article

    ${J_{\rm{s}}} = {A^*}{T^2}\exp \left( { - \frac{{q{\phi _{{\rm{eff}}}}}}{{kT}}} \right),$ (2)

    View in Article

    $n = \frac{q}{{kT}}\frac{1}{{\frac{{{\rm d}\left( {{\rm{ln}}J} \right)}}{{{\rm d}V}}}}.$ (3)

    View in Article

    ${\phi _{{\rm{eff}}}} = \overline {{\phi _{\rm b}}} - \frac{{q{{\rm{\sigma }}^2}}}{{2kT}},$ (4)

    View in Article

    $\overline {{\phi _{\rm b}}} = \overline {{\phi _{{\rm b}0}}} + \gamma V,$ (5)

    View in Article

    ${{\rm{\sigma }}^2} = {{\rm{\sigma }}_0}^2 - \xi V,$ (6)

    View in Article

    ${n^{ - 1}} - 1 = - \gamma - \frac{{q\xi }}{{2kT}}.$ (7)

    View in Article

    ${\rm{ln}}\left( {{J_{\rm s}}/{T^2}} \right) - {q^2}{\sigma _0}^2/2{k^2}{T^2} = {\rm{ln}}\left( {{A^*}} \right) - q\overline {{\phi _{{\rm{b}}0}}} /kT.$ (8)

    View in Article

    $\frac{1}{{{C^2}}} = \frac{2}{{q{\varepsilon _0}{\varepsilon _{\rm{r}}}{N_{\rm{D}}}}}\left( {{V_{{\rm{bi}}}} - V - \frac{{kT}}{q}} \right),$ (9)

    View in Article

    ${N_{\rm{D}}} = \frac{{ - 2}}{{q{\varepsilon _0}{\varepsilon _{\rm{r}}}\left[ {\frac{{{\rm{d}}\left( {\frac{1}{{{C^2}}}} \right)}}{{{\rm{d}}V}}} \right]}},$ (10)

    View in Article

    ${\rm{\sigma }} = {\sigma _0}{\rm{exp}}\left[ { - {{\left( {{T_0}/T} \right)}^{0.5}}} \right],$ ()

    View in Article

    Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors, 2019, 40(1): 012801
    Download Citation