• Photonics Research
  • Vol. 10, Issue 5, 1232 (2022)
Hyeon-Hye Yu1、†, Sunjae Gwak1、†, Jinhyeok Ryu1, Hyundong Kim1, Ji-Hwan Kim1, Jung-Wan Ryu2, Chil-Min Kim1、3、*, and Chang-Hwan Yi2、4、*
Author Affiliations
  • 1Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
  • 2Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
  • 3e-mail: chmkim@dgist.ac.kr
  • 4e-mail: yichanghwan@hanmail.net
  • show less
    DOI: 10.1364/PRJ.449515 Cite this Article Set citation alerts
    Hyeon-Hye Yu, Sunjae Gwak, Jinhyeok Ryu, Hyundong Kim, Ji-Hwan Kim, Jung-Wan Ryu, Chil-Min Kim, Chang-Hwan Yi. Impact of non-Hermitian mode interaction on inter-cavity light transfer[J]. Photonics Research, 2022, 10(5): 1232 Copy Citation Text show less
    References

    [1] Z.-L. Xiang, S. Ashhab, J. Q. You, F. Nori. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 85, 623-653(2013).

    [2] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S. L. Braunstein. Advances in quantum teleportation. Nat. Photonics, 9, 641-652(2015).

    [3] Y. Li, W. Zhang, V. Tyberkevych, W.-K. Kwok, A. Hoffmann, V. Novosad. Hybrid magnonics: physics, circuits, and applications for coherent information processing. J. Appl. Phys., 128, 130902(2020).

    [4] J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, A. L. Gaeta. Synchronization of coupled optical microresonators. Nat. Photonics, 12, 688-693(2018).

    [5] X. Xue, X. Zheng, B. Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 13, 616-622(2019).

    [6] W. Bogaerts, D. Pérez, J. Capmany, D. A. B. Miller, J. Poon, D. Englund, F. Morichetti, A. Melloni. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [7] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [8] S. Malzard, C. Poli, H. Schomerus. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys. Rev. Lett., 115, 200402(2015).

    [9] H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, L. Feng. Non-Hermitian topological light steering. Science, 365, 1163-1166(2019).

    [10] Y. Ao, X. Hu, Y. You, C. Lu, Y. Fu, X. Wang, Q. Gong. Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett., 125, 013902(2020).

    [11] J. E. Heebner, R. W. Boyd. Slow and stopped light ‘slow’ and ’fast’ light in resonator-coupled waveguides. J. Mod. Opt, 49, 2629-2636(2002).

    [12] Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres. Phys. Rev. Lett., 94, 203905(2005).

    [13] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [14] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J. P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 15, 998-1005(1997).

    [15] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, H. A. Haus. Theoretical analysis of channel drop tunneling processes. Phys. Rev. B, 59, 15882-15892(1999).

    [16] C. M. Gentry, M. A. Popović. Dark state lasers. Opt. Lett., 39, 4136-4139(2014).

    [17] H. Hodaei, A. U. Hassan, W. E. Hayenga, M. A. Miri, D. N. Christodoulides, M. Khajavikhan. Dark-state lasers: mode management using exceptional points. Opt. Lett., 41, 3049-3052(2016).

    [18] S. Pereira, P. Chak, J. E. Sipe. Gap-soliton switching in short microresonator structures. J. Opt. Soc. Am. B, 19, 2191-2202(2002).

    [19] M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, J. D. Joannopoulos. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B, 19, 2052-2059(2002).

    [20] K. Mukherjee, P. C. Jana. Controlled optical bistability in parity-time-symmetric coupled micro-cavities: possibility of all-optical switching. Phys. E, 117, 113780(2020).

    [21] M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, M. K. Smit. A fast low-power optical memory based on coupled micro-ring lasers. Nature, 432, 206-209(2004).

    [22] M. F. Yanik, S. Fan. Stopping and storing light coherently. Phys. Rev. A, 71, 013803(2005).

    [23] K. Totsuka, N. Kobayashi, M. Tomita. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett., 98, 213904(2007).

    [24] Q. Xu, P. Dong, M. Lipson. Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys., 3, 406-410(2007).

    [25] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [26] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [27] W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photon. Res., 6, A23-A30(2018).

    [28] C. Zhang, C.-L. Zou, H. Dong, Y. Yan, J. Yao, Y. S. Zhao. Dual-color single-mode lasing in axially coupled organic nanowire resonators. Sci. Adv., 3, e1700225(2017).

    [29] W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, J. Yao. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun., 8, 15389(2017).

    [30] F. Gu, F. Xie, X. Lin, S. Linghu, W. Fang, H. Zeng, L. Tong, S. Zhuang. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light Sci. Appl., 6, e17061(2017).

    [31] J. Okołowicz, M. Płoszajczak, I. Rotter. Dynamics of quantum systems embedded in a continuum. Phys. Rep., 374, 271-383(2003).

    [32] M. Hentschel. Optical microcavities as quantum-chaotic model systems: openness makes the difference!. Adv. Solid State Phys., 48, 293-304(2009).

    [33] T. Kato. Perturbation Theory for Linear Operators(1966).

    [34] W. D. Heiss. Repulsion of resonance states and exceptional points. Phys. Rev. E, 61, 929-932(2000).

    [35] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    [36] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [37] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [38] Ş. K. Özdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [39] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time–symmetric microring lasers. Science, 346, 975-978(2014).

    [40] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [41] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [42] J. Zhang, B. Peng, Ş. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y.-X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [43] M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii. Optical modes in photonic molecules. Phys. Rev. Lett., 81, 2582-2585(1998).

    [44] T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, M. Kuwata-Gonokami. Tight-binding photonic molecule modes of resonant bispheres. Phys. Rev. Lett., 82, 4623-4626(1999).

    [45] S. V. Boriskina. Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. Opt. Lett., 31, 338-340(2006).

    [46] S. V. Boriskina. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Opt. Lett., 32, 1557-1559(2007).

    [47] M. Benyoucef, J.-B. Shim, J. Wiersig, O. G. Schmidt. Quality-factor enhancement of supermodes in coupled microdisks. Opt. Lett., 36, 1317-1319(2011).

    [48] R. El-Ganainy, M. Khajavikhan, L. Ge. Exceptional points and lasing self-termination in photonic molecules. Phys. Rev. A, 90, 013802(2014).

    [49] M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, O. G. Schmidt. Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances. Phys. Rev. B, 77, 035108(2008).

    [50] N. Caselli, F. Intonti, F. La China, F. Biccari, F. Riboli, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, M. Gurioli. Generalized Fano lineshapes reveal exceptional points in photonic molecules. Nat. Commun., 9, 396(2018).

    [51] M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, M. Lončar. Electronically programmable photonic molecule. Nat. Photonics, 13, 36-40(2019).

    [52] H. A. Haus, W. Huang. Coupled-mode theory. Proc. IEEE, 79, 1505-1518(1991).

    [53] C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron., 35, 1322-1331(1999).

    [54] S. Deng, W. Cai, V. N. Astratov. Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides. Opt. Express, 12, 6468-6480(2004).

    [55] C. Yang, Y. Hu, X. Jiang, M. Xiao. Analysis of a triple-cavity photonic molecule based on coupled-mode theory. Phys. Rev. A, 95, 033847(2017).

    [56] J. Wiersig. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett., 97, 253901(2006).

    [57] J. Wiersig. Boundary element method for resonances in dielectric microcavities. J. Opt. A, 5, 53-60(2003).

    [58] H. A. Haus. Waves and Fields in Optoelectronics(1984).

    [59] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569-572(2003).

    [60] A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, P. Sewell. Trends in microdisk laser research and linear optical modelling. Opt. Quantum Electron., 39, 1253-1272(2007).

    [61] C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, V. Shuvayev, L. Deych. Observation of optical coupling in microdisk resonators. Phys. Rev. A, 80, 043841(2009).

    [62] S. V. Boriskina. Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis. J. Opt. Soc. Am. B, 23, 1565-1573(2006).

    [63] M. Parto, Y. G. Liu, B. Bahari, M. Khajavikhan, D. N. Christodoulides. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics, 10, 403-423(2021).

    [64] J.-W. Ryu, S.-Y. Lee, S. W. Kim. Coupled nonidentical microdisks: avoided crossing of energy levels and unidirectional far-field emission. Phys. Rev. A, 79, 053858(2009).

    [65] M. G. Raymer. Quantum theory of light in a dispersive structured linear dielectric: a macroscopic Hamiltonian tutorial treatment. J. Mod. Opt., 67, 196-212(2020).

    [66] H. Eleuch, I. Rotter. Clustering of exceptional points and dynamical phase transitions. Phys. Rev. A, 93, 042116(2016).

    [67] J. Ryu, S. Gwak, J. Kim, H.-H. Yu, J.-H. Kim, J.-W. Lee, C.-H. Yi, C.-M. Kim. Hybridization of different types of exceptional points. Photon. Res., 7, 1473-1478(2019).

    [68] W. Suh, Z. Wang, S. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [69] Q. Zhong, J. Kou, Ş. K. Özdemir, R. El-Ganainy. Hierarchical construction of higher-order exceptional points. Phys. Rev. Lett., 125, 203602(2020).

    [70] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [71] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    Hyeon-Hye Yu, Sunjae Gwak, Jinhyeok Ryu, Hyundong Kim, Ji-Hwan Kim, Jung-Wan Ryu, Chil-Min Kim, Chang-Hwan Yi. Impact of non-Hermitian mode interaction on inter-cavity light transfer[J]. Photonics Research, 2022, 10(5): 1232
    Download Citation