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Understanding inter-site mutual mode interaction in coupled physical systems is essential to comprehend large
compound systems, as this local interaction determines the successive multiple inter-site energy transfer efficien-
cies. In the present study, we demonstrate that only the non-Hermitian coupling can correctly account for the
light transfer between two coupled optical cavities. We also reveal that the non-Hermitian coupling effect becomes
crucial as the system dimension decreases. Our results provide important insight for handling general-coupled
devices in the subwavelength regime. © 2022 Chinese Laser Press
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1. INTRODUCTION

Pairwise-coupled systems have been an essential subject in al-
most all fields of physics, as they serve as the most foundational
element to constitute large-scale complex systems. To date,
coupled systems in various intrinsic physical states have
been implemented in several fields such as hybrid quantum in-
formation [1–3], optical communication [4–6], and topological
photonics [7–10]. A thorough understanding of the inter-site
mutual mode couplings is vital for successful realizations of these
systems.

As the cutting edge of modern technology reaches the reali-
zation of optoelectronic circuits, growing interest has been fo-
cused on coupled optical microcavities (COCs). Heretofore,
numerous theoretical and experimental results have demon-
strated their outstanding potential as efficient on-chip compo-
nents. Because COCs can manipulate resonant modes and
dispersions, they are used as optical delay lines [11–13], filters
[14–17], and switches [18–20]. In addition, COCs have been
considered as promising candidates for high-tech applications,
for instance, optical memory [21–24], highly sensitive sensors
[25–27], and single-mode lasers [28–30]. Recently, COCs have
garnered newly increasing attention related to non-Hermitian
physics [31,32], such as the non-Hermitian degeneracy so-
called exceptional points (EPs) [33–35], parity–time symmetry
[36–42], and photonic molecular states [43–51]. Up to now,
most previous studies assume a lossless coupling between
cavities [52–55] since the coupling loss is almost zero in the
large-scale high-Q devices. However, as modern technology

is challenging the sub-wavelength-scaled devices, it is necessary
to understand the real coupling nature without the lossless
coupling assumption in this regime.

2. INTER-CAVITY LIGHT TRANSFER

In this paper, we demonstrate that inter-cavity light transfer in
the strong coupling regime [34] can only be explained correctly
by lossy coupling between modes. As this coupling results in a
fully non-Hermitian Hamiltonian for resonant modes [56], we
refer to this lossy coupling as non-Hermitian couplingand loss-
less coupling as Hermitian coupling. To explicitly demonstrate
the impact of non-Hermitian coupling in inter-cavity light
transfer, we modeled two interacting whispering gallery modes
(WGMs), each confined in different microdisks. We simulated
experimental situations of inter-cavity light transfer through the
time-dependent finite difference time domain (FDTD)
method. The results were analyzed using the exact numerical
results of the boundary element method (BEM) [57], as well as
using the temporal coupled-mode theory (TCMT) [58,59].
Despite a number of previous works devoted to photonic-
molecular WG-supermode [60–62], a critical non-Hermitian
effect on the inter-cavity coupling has not been discovered
in those works thus far. Recent experimental realizations of
the coupled systems can be found, e.g., in Ref. [63].

Figure 1(a) is an illustration of our COCs, where two dielec-
tric microdisks having radii of r1 and r2 are positioned at a
distance of d 0. We set the refractive index as n � 2.0 inside
the disks and as n � 1.0 outside the disks. We focus on
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transverse magnetic (TM) polarized WGMs. The insets in
Fig. 1 depict two coupled modes that consist of two basis
modes, WGM1 and WGM2, confined in each isolated OC1

and OC2. We have defined WGM1 and WGM2 by �l ,m� �
�1,7� and (1,8), where l and m represent radial and angular
mode numbers, respectively. Throughout this paper, r2 remains
constant while two parameters R ≡ r1∕r2 and D ≡ d 0∕r2
are used for constructing the Riemann surface: solution
sets, fkg ∈ C (wavenumbers), of the Helmholtz equation,
−∇2ψ�r� � n2�r�k2ψ�r�, in the parameter space. Figures 1(b)
and 1(c) examine the Riemann surface of coupled modes near
Re�kr2� � 5.5 in R ∈ �0.88,0.91� and D ∈ �0.37,0.6� [64].
As used in the figure, we will employ the term “branch-cut”
to refer to the coalescence curve of Re�kr2� or Im�kr2� in
the parameter space.

We begin with FDTD calculations for the energy density of
the steady-state (i.e., t → ∞) electromagnetic fields inOC1 and
OC2. In this numerical experiment, the COC is excited by two
fundamental-TM mode sources, e−iωt , located only in OC2,
where i � ffiffiffiffiffi

−1
p

,ω � ckin ∈ R, and c is the speed of light. Two
sources located at the same position propagate bi-directionally
(vertically upward/downward) along the cavity boundary with
the same phase (see the arrows in the inset of Fig. 2) to excite
the even-parity WGMs (see the insets in Fig. 1) about the hori-
zontal axis. Figure 2 shows the normalized R-dependent energy
density amplitude (EDA) defined [58] by

jaj�kinr2�j ≡
1

jamaxj

�
1

2Aj

Z
OCj

�n2�r�jEj�r�j2 � jBj�r�j2�dr
�1

2

(1)

for a fixedD � 0.37, where Aj is the disk area ofOCj, Ej (Bj) is
the electric (magnetic) field inside OCj, and jamaxj is the nor-
malization factor, which is the maximum EDA in the
�kinr2,R� region of interest. The integral domain is restricted
to the inside of the disk OCj.

The EDA, ja1j, inOC1 can be interpreted as the light trans-
fer efficiency from OC2, as only the latter embeds the light
source in it. In Fig. 2, it is found that the strongest light transfer
occurs near a “interaction center” [≡, where the gap between
Re�k�r2� and Re�k−r2� becomes the smallest, as shown in
Fig. 1, respectively]. At this point, the two interacting modes
form the well-known doublet of the bonding and anti-bonding
photonic molecular states [43] (see Fig. 1), and they correspond
to the lower (∇) and upper (Δ) triangles in Fig. 2(a). In the
Fig. 2(a), as the solid vertical curve at R � 0.892 exhibits only
a single peak over the anti-bonding mode (Δ), we can confirm
that the light transfer associated with the anti-bonding mode is
much stronger than that of the bonding mode.

To clarify the origin of this phenomenon, the EDA spectra
were analyzed using a two-mode TCMT model of a evanes-
cently coupled COC:

da1
dt

� −iω1a1 − g1a1 − iγ12a2,

da2
dt

� −iω2a2 − g2a2 − iγ21a1 �
ffiffiffiffi
g s

p
S0e−iωt , (2)

where ωj ≡ c Re�kj� denotes the resonant frequency, gj≡
cjIm�kj�j denotes the decay rate of WGMj, and faj,S0,γijg∈C
denotes the mode amplitude, source amplitude, and coupling
coefficient, respectively. The validity of the two-mode approxi-
mation is guaranteed as the coupled modes are describable by
the combination of WGM1 and WGM2, with negligible other
low-Q mode contributions.

Given the time-harmonic ansatz of solutions, aj � a0j e−iωt ,
we can obtain the steady-state amplitude a0j ∈ C as follows:

a01�ω� �
−iγ12

ffiffiffiffig sp S0
γ12γ21 − �ω − ω1 � ig1��ω − ω2 � ig2�

,

a02�ω� �
−i ffiffiffiffig sp S0�ω − ω1 � ig1�

γ12γ21 − �ω − ω1 � ig1��ω − ω2 � ig2�
: (3)

Essentially, a01 and a02 correspond to the FDTD results in
Figs. 2(a) and 2(b), respectively. We emphasize that the cou-
pling coefficients γij in Eq. (3) are crucial for reproducing the
FDTD experiments. Most importantly, it turns out that the
typical assumption of a lossless coupling, γ12 � γ�21 ∈ C or
γ12 � γ21 ∈ R [58], is valid only in the classical limit
[Re�kr2� ≫ 1] and may fail when approaching the subwave-
length regime [Re�kr2� ∼ 1].

For an explicit demonstration of this finding, we set the ef-
fective Hamiltonian, which has complex wavenumber eigenval-
ues, k	 ∈ C, of the coupled modes as follows:

Heff c	 �
�

k1 μ12
μ21 k2

��
c	1
c	2

�
� k	

�
c	1
c	2

�
, (4)

where kj ≡ �ωj − ig j�∕c represents complex wavenumbers of
WGMj with amplitudes Ej�r� and μij ≡ γij∕c. The eigenvec-
tors �c	1 , c	2 �T are the coefficients of the two basis modes
and construct new eigenstates of the coupled modes,

Fig. 1. (a) System configuration of coupled microcavities, where r1
and r2 are radii of cavities and d 0 is the inter-cavity distance. (b) and
(c) are the Riemann surfaces for the real and imaginary parts of the
resonant wavenumbers in the parameter space �R,D�, obtained using
the boundary element method. The branch-cut (interaction center)
is marked by a red solid (gray dashed) curve. The insets in (b) are
the spatial distributions of the two coupled modes at the interaction
center.
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E	�r� � c	1 E1�r� � c	2 E2�r�. For the known k	, we can fix
μij after obtaining those coefficients numerically. By exploiting
the general bi-orthogonality of modes in non-conservative sys-
tems,

R
n2i �r�Ei�r� · Ej�r�dr � δij [65,66], the coefficients are

computed as follows:

c	i �
Z

n2i �r�Ei�r� · E	�r�dr: (5)

Hence, we can deduce a system of linear equations:�
k1 − k	 μ12
μ21 k2 − k	

��
c	1
c	2

�
� 0, (6)

for the unknowns kj and μij, respectively. Notably, we set kj as
free variables and k	 as fixed values [67]. Eventually, the de-
sired couplings μij can be obtained as a function of the system
parameters R and D. Figures 3(a) and 3(b) show the real and

imaginary parts of μij as a function of R for a fixedD � 0.37. It
is clear that μ12 ≠ μ�21 in the regime of kr2 ∼ 5. Note that, as we
can confirm that the single cavity modes always provide good
approximations for the coupled-cavity modes obtained far from
the interaction center, we can use them as basis functions for
the coupled modes as well.

By inserting the obtained μij into Eq. (3) through the rela-
tion μij ≡ γij∕c, we calculate the R-dependent ja1j at D � 0.37
in Fig. 4(a) (ja2j in the inset). These figures accurately repro-
duce the FDTD results shown in Fig. 2, in particular, enhanced
light transfer near the anti-bonding mode. We can prove that
this enhancement originates from the non-Hermitian couplings
μij through counter-exemplification of the artificial lossless
coupling case, μ12 � μ�21 � �μ12 � μ21�∕2. As is depicted in
Fig. 4(b) (and its inset), the Hermitian coupling yields a
point-symmetric-like feature rather than an enhanced energy
density near the anti-bonding mode.

3. EFFECT OF NON-HERMITIAN COUPLING

The effect of the non-Hermitian coupling described above can
be understood as a consequence of a decay rate imbalance near
the interaction center. Figure 3(c) and its inset show the imagi-
nary and real parts of K 	 (≡ relative eigenvalues for the mean
eigenvalue) that are obtained using a direct numerical method
(BEM) and by solving Eq. (4) with the artificial Hermitian
coupling, as well as the true non-Hermitian coupling. In the
figures, although their real parts (inset) are almost identical,
their imaginary parts show significant differences: the non-
Hermitian coupling correctly reproduces the numerical results
near the interaction center (shaded area), whereas the
Hermitian coupling fails. More precisely, the non-Hermitian
couplings reproduce the same shift of the branch-cut of the
imaginary eigenvalues (ΔR) from the interaction center (solid
orange line). The Hermitian coupling “never” induced this
shift. Owing to this shift, the bonding and anti-bonding modes
at the interaction center have distinctive decay rates [see the two
big solid dots in Fig. 4(c)], long-lived anti-bonding modes,
and short-lived bonding modes. Because the long-lived anti-
bonding mode has a higher steady-state energy density in
the cavity, it can provide a much more efficient light transfer
route than the bonding mode.

The explanation for this decay rate imbalance is rather straight-
forward. Supposing the initial states with Re�k1��Re�k2�

Fig. 2. (a) FDTD results of the EDA spectra of ja1j and (b) of ja2j
atD � 0.37, as a function of �kin,R�. The dashed curves are Re�k	r2�
obtained using the BEM. In (a), solid curves represent EDA as a func-
tion of kin for fixed R � 0.88 and 0.892, whereas the upper/lower
triangles mark the anti-bonding/bonding modes. The inset in
(b) shows the radiating pumping source (arrow) used in FDTD
simulation.

Fig. 3. Couplings ofWGM1 andWGM2: (a) real and (b) imaginary
parts of μ12r2 (red circle) and μ21r2 (black square) obtained using
Eq. (6), as a function of R at D � 0.37. In (c), Im�K 	r2� obtained
using the BEM (gray solid) are compared to those obtained using
Eq. (4) with the Hermitian (open circle) and non-Hermitian (red
dashed line) couplings. The inset in (c) shows the Re�K 	r2�, where
K 	r2 are the re-expressed relative eigenvalues of the mean eigenvalues.
The vertical solid lines in (c) and the inset mark the interaction center,
whereas the vertical dashed line in (c) marks the branch-cut.

Fig. 4. TCMT results of the EDA spectra of ja1j with (a) true non-
Hermitian and (b) artificial Hermitian couplings, respectively, at
D � 0.37. The insets show the values of ja2j. The dashed curves
are Re�k	r2� obtained using the BEM.
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and μ12 � μ�21, then the difference between the two eigenvalues
of Eq. (4) becomes

Δk ≡ k� − k− �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jμ12j2 − Im�δk12�2

p
, (7)

where Im�δk12� ≡ Im�k1 − k2�. Although Im�δk12� is indepen-
dent of D, the coupling jμ12j increases from zero to a finite
value as D decreases from infinity. Accordingly, Δk changes
from a pure imaginary value to a real number, that is, from a
weak to strong coupling regime, via an EP, at which 4jμ12j2 �
Im�δk12�2. In this Hermitian coupling case in the strong cou-
pling regime, the interaction center and the point where
Im�k�� � Im�k−� (i.e., branch-cut) are identical in R variation
for all D, that is, the lifetimes of the bonding and anti-bonding
modes at the interaction center are the same, such that the
point-symmetric-like feature of EDA in Fig. 4(b) is induced.
In contrast to the Hermitian coupling case, however, if the cou-
pling is lossy, that is, μ12 ≠ μ�21, Δk in Eq. (7) becomes

Δk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��uu 0 − vv 0� � i�uv 0 � u 0v�� − Im�δk12�2

p
, (8)

where μ12 ≡ u� iv, μ21 ≡ u 0 � iv 0, and fu� 0�, v� 0�g ∈ R. We
emphasize that the non-zero Im �μ12μ21� � uv 0 � u 0v shifts
the branch-cut from the interaction center and splits the
lifetimes of the doublet modes: long-lived anti-bonding and
short-lived bonding modes at the interaction center. The shift
direction of a branch-cut can be either to the right or left from
the interaction center; therefore, the enhanced mode can be
either the bonding or anti-bonding mode. Accordingly, the en-
hancement of the light transfer is independent of the wavefunc-
tion morphologies of the modes.

The branch-cut shift induced by the non-Hermitian cou-
pling was found to be prominent in the subwavelength regime
and diminished as we entered the classical regime. In Fig. 5(a),
we obtain the parameter trajectories of the branch-cut and in-
teraction center in the �R,D�-space for five different coupling
pairs (i)–(v). In the Fig. 5(a), the defined mean wavenumbers
≡ Re�hk1 � k2i�r2∕2 gradually increase from ∼3 to ∼8 for the
pair from (i) to (v), where h·i denotes the average over R.

Clearly, the branch-cut shifts from the interaction center for
smaller Re�kr2� values, for instance, ∼3 for (i) is substantial,
whereas it is negligible for larger values, such as ∼7 or 8 for
(iv) and (v).

In fact, the transition from the non-Hermitian to the
Hermitian coupling regime occurs very abruptly, much earlier
than the classical regime, such as Re�kr2� ∼ 8 in our examples.
This abrupt transition is readily understood by the rapid con-
vergence of Im�μ12μ21� to zero as Re�kr2� increases [see
Eq. (8)]. In Fig. 5(b), we can observe that jIm�hμ12μ21i�j is
nearly zero for (v), whereas it is several orders of magnitude
larger than (v) for (i). As the non-Hermitian coupling includes
the “external coupling” via environments, this drastic effect of
non-Hermitian coupling is profoundly associated with the
openness [∝ Im�kr2�] of the involved modes. Note that the
increased non-Hermitian coupling effect in the small cavity
case demonstrates that the openness is a dominant factor giving
rise to the non-Hermitian coupling, as the number of modes
supported in the small-sized cavity is reduced significantly,
i.e., the non-Hermitian coupling does not originate from the
extra mode coupling effects. Because Im�μ12μ21� � uv 0 � u 0v
is a cross product of the real and imaginary parts of μij [see
Eq. (8)], the order of magnitude of Im�μ12μ21� is determined
by jμijj. As jμijj is almost comparable to jIm�kr2�j in Fig. 5(c),
we can deduce that a larger decay of the basis mode results in
stronger inter-site coupling. Therefore, we can conclude that
the openness of basis modes directly promotes both the cou-
pling strength itself and the non-Hermitian coupling effect,
that is, a reduction in the confinement of the mode in the
cavity leads to a higher impact of the non-Hermitian coupling.
Our results can be viewed as being consistent with those in
Ref. [68], which point out that the emission couplings and
the evanescent couplings can be described differently by the
skew-Hermitian and the Hermitian couplings, respectively.

Thus far, we have observed that the non-Hermitian cou-
pling has a significant effect in general inter-cavity mode cou-
plings when the basis modes are confined in non-identical disks
with different angular momenta m. Here, we remark one spe-
cial case [64]: inter-cavity couplings between the same m
modes, m1 � m2, and R ≈ 1. In Fig. 6, we examine the cases
of m � 7 and D � 0.37. Owing to the symmetric property
of R variation about R � 1, this COC has balanced values of

Fig. 5. (a) Parameter trajectory for the branch-cut (filled symbols)
and the interaction center (open circles) for five cases of WGM
coupling pairs defined by angular mode numbers: [(i), �m1,m2� �
�4,5�], [(ii), (7,8)], [(iii), (11,12)], [(iv), (12,13)], [(v), (13,14)].
(b) jIm�hμ12μ21i�jr22 for pairs (i), (ii), and (v) obtained at
D � 0.37. (c) Comparison between the mean values of Im�kr2�
and μij for the same pairs at D � 0.37.

Fig. 6. Couplings for pair �m1,m2� � �7,7�, R ≈ 1. (a) Real and
(b) imaginary parts of μ12r2 (red circle) and μ21r2 (black square) ob-
tained using Eq. (6), as a function of R at D � 0.37. The (c) real and
(d) imaginary relative eigenvalues of K 	r2 obtained using the BEM
(gray solid) are compared to those obtained using Eq. (4) with the
Hermitian (open circle) and non-Hermitian (red dashed) couplings.
The vertical solid lines in (c) and (d) indicate the interaction center.
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μij [see Figs. 6(a) and 6(b)] and a definite interaction center;
that is, it is not dependent on D at all [see Figs. 6(c) and 6(d)].
Moreover, there is no branch-cut in the Riemann surface; de-
generacies in both Re�K r2� and Im�K r2� are always lifted at
R ≈ 1, provided that D is finite [64]. In Figs. 6(c) and 6(d), we
find that while the non-Hermitian coupling reproduces this
feature accurately, the Hermitian coupling is valid only for
Re�K r2�. The reason for this is exactly the same as before:
as Im�μ12μ21� � 0 through the definition of the Hermitian
coupling, the split in Im�K r2� can never be realized, whereas
the non-Hermitian coupling is able to realize this split.
Therefore, again, the broken point symmetry in the EDA spec-
trum is induced (not shown) by the non-Hermitian coupling
consistently in this system as well.

4. CONCLUSION

In summary, we have demonstrated that the inter-cavity light
transfer can be explained successfully only when non-
Hermitian coupling is considered. We also have found that
the non-Hermitian coupling effect dramatically increases as the
system size approaches the subwavelength regime. That is, the
imaginary parts of coupling terms, inducing the branch-cut
shift, are negligible when the system size is large; however,
they increase rapidly as the system size decreases. This size-
dependence effect of non-Hermitian coupling has been proven
to be associated with the “opening” of modes. Recently, several
theoretical models have utilized non-Hermitian coupling to
achieve fruitful properties such as hierarchical EPs [69] and
topological phase transition [10]. Substantiating these ideas
to real devices can be accomplished only when we understand
the genuine features of non-Hermitian couplings. In this re-
gard, we believe our results will contribute to future technol-
ogies, such as on-chip silicon photonics and optoelectronic
circuits [70,71] in the subwavelength regime where the non-
Hermitian coupling effect becomes important.
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