• Opto-Electronic Advances
  • Vol. 2, Issue 3, 190002 (2019)
Dongshi Zhang and Koji Sugioka*
Author Affiliations
  • RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
  • show less
    DOI: 10.29026/oea.2019.190002 Cite this Article
    Dongshi Zhang, Koji Sugioka. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2019, 2(3): 190002 Copy Citation Text show less
    References

    [1] J Bonse, S H hm, S V Kirner, A Rosenfeld, J Krüger. Laser-induced periodic surface structures—a scientific evergreen. IEEE J Sel Top Quantum Electron, 23, 9000615(2017).

    [2] K Sugioka. Progress in ultrafast laser processing and future prospects. Nanophotonics, 6, 393-413(2017).

    [3] K Sugioka, Y Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light, 3, e149(2014).

    [4] H B Zeng, X W Du, S C Singh, S A Kulinich, S K Yang et al. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv Funct Mater, 22, 1333-1353(2012).

    [5] D S Zhang, B G kce. Perspective of laser-prototyping nanoparticle-polymer composites. Appl Surf Sci, 392, 991-1003(2017).

    [6] D S Zhang, B G kce, S Barcikowski. Laser synthesis and processing of colloids: Fundamentals and applications. Chem Rev, 117, 3990-4103(2017).

    [7] D S Zhang, J Liu, P F Li, Z F Tian, C H Liang. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids. ChemNanoMat, 3, 512-533(2017).

    [8] V Amendola, M Meneghetti. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15: 3027-3046 (2013). Phys Chem Chem Phys, 15, 3027-3046(2013).

    [9] G W Yang. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog Mater Sci, 52, 648-698(2007).

    [10] D S Zhang, C Zhang, J Liu, Q Chen, X G Zhu et al. Carbon-encapsulated metal/metal carbide/metal oxide core-shell nanostructures generated by laser ablation of metals in organic solvents. ACS Appl Nano Mater, 2, 28-39(2019).

    [11] D S Zhang, W Choi, K Yazawa, K Numata, A Tateishi et al. Two birds with one stone: Spontaneous size separation and growth inhibition of femtosecond laser-generated surfactant-free metallic nanoparticles via ex situ su-8 functionalization. ACS Omega, 3, 10953-10966(2018).

    [12] D S Zhang, J Liu, C H Liang. Perspective on how laser-ablated particles grow in liquids. Sci China Phys, Mech Astron, 60, 074201(2017).

    [13] D S Zhang, W Choi, J Jakobi, M R Kalus, S Barcikowski et al. Spontaneous shape alteration and size separation of surfactant-free silver particles synthesized by laser ablation in acetone during long-period storage. Nanomaterials, 8, 529(2018).

    [14] D S Zhang, F Chen, Q Yang, J L Yong, H Bian et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser. ACS Appl Mater Interfaces, 4, 4905-4912(2012).

    [15] D S Zhang, F Chen, G P Fang, Q Yang, D G Xie et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J Micromech Microeng, 20, 075029(2010).

    [16] D S Zhang, F Chen, Q Yang, J H Si, X Hou. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser. Soft Matter, 7, 8337-8342(2011).

    [17] J L Yong, F Chen, Q Yang, Z D Jiang, X Hou. A review of femtosecond-laser-induced underwater superoleophobic surfaces. Adv Mater Interfaces, 5, 1701370(2018).

    [18] R Intartaglia, A Barchanski, K Bagga, A Genovese, G Das et al. Bioconjugated silicon quantum dots from one-step green synthesis. Nanoscale, 4, 1271-1274(2012).

    [19] C Simitzi, P Efstathopoulos, A Kourgiantaki, A Ranella, I Charalampopoulos et al. Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth. Biomaterials, 67, 115-128(2015).

    [20] C Yiannakou, C Simitzi, A Manousaki, C Fotakis, A Ranella et al. Cell patterning via laser micro/nano structured silicon surfaces. Biofabrication, 9, 025024(2017).

    [21] Z Y Wang, R Zhou, F Wen, R K Zhang, L Ren et al. Reliable laser fabrication: The quest for responsive biomaterials surface. J Mater Chem B, 6, 3612-3631(2018).

    [22] X Luo, H J Zhang, W Pan, J H Gong, B Khalid et al. SiOx nanodandelion by laser ablation for anode of lithium-ion battery. Small, 11, 6009-6012(2015).

    [23] K C Xu, C T Zhang, R Zhou, R Ji, M H Hong. Hybrid micro/nano-structure formation by angular laser texturing of si surface for surface enhanced raman scattering. Opt Express, 24, 10352-10358(2016).

    [24] J Yang, J B Li, Z R Du, Q H Gong, J H Teng et al. Laser hybrid micro/nano-structuring of si surfaces in air and its applications for sers detection. Sci Rep, 4, 6657(2014).

    [25] A F Sartori, S Orlando, A Bellucci, D M Trucchi, S Abrahami et al. Laser-induced periodic surface structures (LIPSS) on heavily boron-doped diamond for electrode applications. ACS Appl Mater Interfaces, 10, 43236-43251(2018).

    [26] G B Duan, X L Hu, X Y Song, Z W Qiu, H B Gong et al. Morphology evolution of zno submicroparticles induced by laser irradiation and their enhanced tribology properties by compositing with Al2O3 nanoparticles. Adv Eng Mater, 17, 341-348(2015).

    [27] T Luo, P Wang, Z W Qiu, S H Yang, H B Zeng et al. Smooth and solid WS2 submicrospheres grown by a new laser fragmentation and reshaping process with enhanced tribological properties. Chem Commun, 52, 10147-10150(2016).

    [28] T Luo, X C Chen, P S Li, P Wang, C C Li et al. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties. Nanotechnology, 29, 265704(2018).

    [29] J Bonse, S Kirner, M Griepentrog, D Spaltmann, J Krüger. Femtosecond laser texturing of surfaces for tribological applications. Materials, 11, 801(2018).

    [30] D Serien, K Sugioka. Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electron Adv, 1, 180008(2018).

    [31] K Sugioka, Y Cheng. Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev, 1, 041303(2014).

    [32] M Birnbaum. Semiconductor surface damage produced by ruby lasers. J Appl Phys, 36, 3688-3689(1965).

    [33] Harzic R Le, D D rr, D Sauer, F Stracke, H Zimmermann. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl Phys Lett, 98, 211905(2011).

    [34] M Huang, F L Zhao, Y Cheng, N S Xu, Z Z Xu. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano, 3, 4062-4070(2009).

    [35] B Tan, K Venkatakrishnan. A femtosecond laser-induced periodical surface structure on crystalline silicon. J Micromech Microeng, 16, 1080-1085(2006).

    [36] F Costache, S Kouteva-Arguirova, J Reif. Sub-damage-threshold femtosecond laser ablation from crystalline Si: Surface nanostructures and phase transformation. Appl Phys A, 79, 1429-1432(2004).

    [37] G D Tsibidis, M Barberoglou, P A Loukakos, E Stratakis, C Fotakis. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys Rev B, 86, 115316(2012).

    [38] C Wang, H B Huo, M Johnson, M Y Shen, E Mazur. The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations. Nanotechnology, 21, 075304(2010).

    [39] Harzic R Le, H Schuck, D Sauer, T Anhut, I Riemann, K K nig. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt Express, 13, 6651-6656(2005).

    [40] T J Y Derrien, R Koter, J Krüger, S H hm, A Rosenfeld et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water. J Appl Phys, 116, 074902(2014).

    [41] G Daminelli, J Krüger, W Kautek. Femtosecond laser interaction with silicon under water confinement. Thin Solid Films, 467, 334-341(2004).

    [42] Harzic R Le, D D rr, D Sauer, M Neumeier, M Epple et al. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt Lett, 36, 229-231(2011).

    [43] M Y Shen, J E Carey, C H Crouch, M Kandyla, H A Stone et al. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Lett, 8, 2087-2091(2008).

    [44] W Kautek, P Rudolph, G Daminelli, J Krüger. Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructures. Appl Phys A, 81, 65-70(2005).

    [45] H O Jeschke, M E Garcia, M Lenzner, J Bonse, J Krüger et al. Laser ablation thresholds of silicon for different pulse durations: Theory and experiment. Appl Surf Sci, 197-198, 839-844(2002).

    [46] G Miyaji, K Miyazaki, K F Zhang, T Yoshifuji, J Fujita. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Opt Express, 20, 14848-14856(2012).

    [47] K Miyazaki, G Miyaji. Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water. Phys Procedia, 39, 674-682(2012).

    [48] T H R Crawford, A Borowiec, H K Haugen. Femtosecond laser micromachining of grooves in silicon with 800 nm pulses. Appl Phys A, 80, 1717-1724(2005).

    [49] S Lee, D F Yang, S Nikumb. Femtosecond laser micromilling of Si wafers. Appl Surf Sci, 254, 2996-3005(2008).

    [50] S Hamad, G K Podagatlapalli, V S Vendamani, Rao S V S Nageswara, A P Pathak et al. Femtosecond ablation of silicon in acetone: Tunable photoluminescence from generated nanoparticles and fabrication of surface nanostructures. J Phys Chem C, 118, 7139-7151(2014).

    [51] G Meng, L Jiang, X Li, Y D Xu, X S Shi et al. Dual-scale nanoripple/nanoparticle-covered microspikes on silicon by femtosecond double pulse train irradiation in water. Appl Surf Sci, 410, 22-28(2017).

    [52] R A Ganeev, D Y Lei, C Hutchison, T Witting, F Frank et al. Extended homogeneous nanoripple formation during interaction of high-intensity few-cycle pulses with a moving silicon wafer. Appl Phys A, 112, 457-462(2013).

    [53] Y C Ma, J H Si, X H Sun, T Chen, X Hou. Progressive evolution of silicon surface microstructures via femtosecond laser irradiation in ambient air. Appl Surf Sci, 313, 905-910(2014).

    [54] S Barcikowski, A Menéndez-Manjón, B Chichkov, M Brikas, G Račiukaitis. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett, 91, 083113(2007).

    [55] D S Zhang, B Gökce, S Sommer, R Streubel, S Barcikowski. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Appl Surf Sci, 367, 222-230(2016).

    [56] Z Iqbal, S Vepřek, A P Webb, P Capezzuto. Raman scattering from small particle size polycrystalline silicon. Solid State Commun, 37, 993-996(1981).

    [57] V Svrcek, D Mariotti, U Cvelbar, G Filipič, M Lozac'h et al. Environmentally friendly processing technology for engineering silicon nanocrystals in water with laser pulses. J Phys Chem C, 120, 18822-18830(2016).

    [58] C Meier, S Lüttjohann, V G Kravets, H Nienhaus, A Lorke et al. Raman properties of silicon nanoparticles. Physica E: Low-dimens Syst Nanostruct, 32, 155-158(2006).

    [59] R Streubel, S Barcikowski, B G kce. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt Lett, 41, 1486-1489(2016).

    [60] J H Yoo, S H Jeong, X L Mao, R Greif, R E Russo. Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl Phys Lett, 76, 783-785(2000).

    [61] D S Zhang, W Choi, Y Oshima, U Wiedwald, S H Cho et al. Magnetic Fe@FeOx, Fe@C and α-Fe2O3 single-crystal nanoblends synthesized by femtosecond laser ablation of fe in acetone. Nanomaterials, 8, 631(2018).

    [62] X Sedao, M V Shugaev, C P Wu, T Douillard, C Esnouf et al. Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano, 10, 6995-7007(2016).

    [63] D S Zhang, M Lau, S W Lu, S Barcikowski, B G kce. Germanium sub-microspheres synthesized by picosecond pulsed laser melting in liquids: Educt size effects. Sci Rep, 7, 40355(2017).

    [64] C Y Shih, R Streubel, J Heberle, A Letzel, M V Shugaev et al. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: The origin of the bimodal size distribution. Nanoscale, 10, 6900-6910(2018).

    [65] A Abou-Saleh, E T Karim, C Maurice, S Reynaud, F Pigeon et al. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl Phys A, 124, 308(2018).

    [66] G Miyaji, K Miyazaki. Role of multiple shots of femtosecond laser pulses in periodic surface nanoablation. Appl Phys Lett, 103, 071910(2013).

    [67] H C Cheng, P Li, S Liu, P Chen, L Han et al. Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams. Appl Phys Lett, 111, 141901(2017).

    [68] F Fraggelakis, E Stratakis, P A Loukakos. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses. Appl Surf Sci, 444, 154-160(2018).

    [69] D S Zhang, Z Ma, M Spasova, A E Yelsukova, S W Lu et al. Formation mechanism of laser-synthesized iron-manganese alloy nanoparticles, manganese oxide nanosheets and nanofibers. Part Part Syst Char, 34, 1600225(2017).

    [70] M V Shugaev, I Gnilitskyi, N M Bulgakova, L V Zhigilei. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys Rev B, 96, 205429(2017).

    [71] X L He, A Datta, W Nam, L M Traverso, X F Xu. Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS). Sci Rep, 6, 35035(2016).

    [72] H Li, Z Shi, X W Wang, L Z Sui, S Y Li et al. Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water. Chem Phys Lett, 681, 86-89(2017).

    [73] F V Potemkin, E I Mareev, E O Smetanina. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water. Phys Rev A, 97, 033801(2018).

    [74] S Besner, A V Kabashin, F M Winnik, M Meunier. Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laser-based ablation and seed growth. J Phys Chem C, 113, 9526-9531(2009).

    [75] Kaviany M. Principles of Heat Transfer (John Wiley & Sons, 2002).KavianyMPrinciples of Heat Transfer (John Wiley & Sons, 2002)

    [76] T J Y Derrien, J Krüger, J Bonse. Properties of surface plasmon polaritons on lossy materials: Lifetimes, periods and excitation conditions. J Opt, 18, 115007(2016).

    [77] D Ziemkiewicz, K Słowik, S Zielińska-Raczyńska. Ultraslow long-living plasmons with electromagnetically induced transparency. Opt Lett, 43, 490-493(2018).

    [78] M Y Shen, C H Crouch, J E Carey, R Younkin, E Mazur et al. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask. Appl Phys Lett, 82, 1715-1717(2003).

    [79] N Medvedev, Z Li, B Ziaja. Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation. Phys Rev B, 91, 054113(2015).

    [80] B R Tull, J E Carey, E Mazur, J P McDonald, S M Yalisove. Silicon surface morphologies after femtosecond laser irradiation. MRS Bull, 31, 626-633(2006).

    [81] H Y Xue, G L Deng, G Y Feng, L Chen, J Q Li et al. Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon. Opt Lett, 42, 3315-3318(2017).

    Dongshi Zhang, Koji Sugioka. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electronic Advances, 2019, 2(3): 190002
    Download Citation