• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120001 (2018)
Mengcong Du1、2, Qianqian Liu1、2, Lang Marion1、2, Xiuhong Wang1、2、*, and Pu Wang1、2
Author Affiliations
  • 1 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
  • 2 Beijing Engineering Research Center of Applied Laser Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP55.120001 Cite this Article Set citation alerts
    Mengcong Du, Qianqian Liu, Lang Marion, Xiuhong Wang, Pu Wang. Research Progress and Application of Cell Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120001 Copy Citation Text show less
    References

    [1] Zhao K H, Zhong X H[M]. Optics(1984).

    [2] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960). http://ptep.oxfordjournals.org/external-ref?access_num=10.1038/187493a0&link_type=DOI

    [3] Zhao B L. The latest development of solid-state lasers[J]. Laser & Optoelectronics Progress, 18, 1-10(1981).

    [4] Qing G. The new development of solid-state lasers[J]. Laser & Optoelectronics Progress, 21, 4-7(1984).

    [5] Hong G. The new development of solid-state lasers[J]. Laser & Optoelectronics Progress, 23, 10-14(1986).

    [6] Gan Q J, Jiang B X, Zhang P D et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 54, 010003(2017).

    [7] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54, 197-236(1998). http://www.sciencedirect.com/science/article/pii/S1386142597002278

    [8] Lang J H, Gu B, Xu Y et al. The GaN-based semiconductor materials LDs[J]. Laser Technology, 27, 321-324, 327(2003).

    [9] Lou Q H, Zhou J, Zhu J Q et al. Recent progress of high-power fiber lasers[J], 35, 135-138(2006).

    [10] Wu Z L, Lou Q H, Zhou J et al. Research progress of pumping methods for fiber laser[J]. Laser & Optoelectronics Progress, 41, 30-34(2004).

    [11] Erickson D, Sinton D, Psaltis D. Optofluidics for energy applications[J]. Nature Photonics, 5, 583-590(2011).

    [12] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 442, 381-386(2006). http://www.tandfonline.com/servlet/linkout?suffix=CIT0012&dbid=8&doi=10.1080%2F01694243.2018.1461447&key=16871205

    [13] Monat C, Domachuk P, Eggleton B J. Integrated optofluidics: a new river of light[J]. Nature Photonics, 1, 106-114(2007). http://www.nature.com/nphoton/journal/v1/n2/abs/nphoton.2006.96.html

    [14] Helbo B, Kristensen A, Menon A. A micro-cavity fluidic dye laser[J]. Journal of Micromechanics and Microengineering, 13, 307-311(2003). http://iopscience.iop.org/0960-1317/13/2/320/

    [15] Fan X D, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 5, 591-597(2011). http://www.nature.com/nphoton/journal/v5/n10/abs/nphoton.2011.206.html

    [16] Schmidt H, Hawkins A R. The photonic integration of non-solid media using optofluidics[J]. Nature Photonics, 5, 598-604(2011). http://www.nature.com/nphoton/journal/v5/n10/abs/nphoton.2011.163.html?message-global=remove

    [17] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).

    [18] Lan X J[M]. Laser Technology(2000).

    [19] Zhou B K, Gao Y Z, Chen T R et al[M]. Laser Principle(2014).

    [20] Balslev S, Kristensen A. Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments[J]. Optics Express, 13, 344-351(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000011000011000052000001&idtype=cvips&gifs=Yes

    [21] Li Z N, Zhang Z Y, Emery T et al. Single mode optofluidic distributed feedback dye laser[J]. Optics Express, 14, 696-701(2006). http://www.opticsinfobase.org/oe/abstract.cfm?id=87566

    [22] Sun Y, Fan X. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers[J]. Angewandte Chemie, 124, 1236-1239(2011). http://www.ncbi.nlm.nih.gov/pubmed/22213205

    [23] Chen Q S, Zhang X W, Sun Y Z et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers[J]. Lab on a Chip, 13, 2679-2681(2013). http://europepmc.org/abstract/med/23545541

    [24] Aubry G, Kou Q, Soto-Velasco J et al. A multicolor microfluidic droplet dye laser with single mode emission[J]. Applied Physics Letters, 98, 111111(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5736204

    [25] Wu X, Chen Q S, Sun Y Z et al. Bio-inspired optofluidic lasers with luciferin[J]. Applied Physics Letters, 102, 203706(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6520804

    [26] Lacey S, White I M, Sun Y Z et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold[J]. Optics Express, 15, 15523-15530(2007). http://europepmc.org/abstract/MED/19550838

    [27] Sun Y Z, Shopova S I, Wu C S et al. Bioinspired optofluidic FRET lasers via DNA scaffolds[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 16039-16042(2010). http://www.ncbi.nlm.nih.gov/pubmed/20798062

    [28] Zhang X W, Lee W, Fan X D. Bio-switchable optofluidic lasers based on DNA Holliday junctions[J]. Lab on a Chip, 12, 3673-3675(2012). http://www.ncbi.nlm.nih.gov/pubmed/22790530

    [29] Schäfer J, Mondia J P, Sharma R et al. Quantum dot microdrop laser[J]. Nano Letters, 8, 1709-1712(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4571943

    [30] Yun S H. All-biomaterial laser using vitamin and biopolymers[J]. Advanced Materials, 25, 5943-5947(2013).

    [31] Yang Y, Liu A Q, Lei L et al. A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams[J]. Lab on a Chip, 11, 3182-3187(2011). http://www.ncbi.nlm.nih.gov/pubmed/21826360

    [32] Shopova S I, Zhou H Y, Fan X D et al. Optofluidic ring resonator based dye laser[J]. Applied Physics Letters, 90, 221101(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4827080

    [33] Lee W, Fan X D. Intracavity DNA melting analysis with optofluidic lasers[J]. Analytical Chemistry, 84, 9558-9563(2012). http://pubs.acs.org/doi/abs/10.1021/ac302416g

    [34] Qian S X, Snow J B, Tzeng H M et al. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 231, 486-488(1986). http://www.ncbi.nlm.nih.gov/pubmed/17776021

    [35] Moon H J, Chough Y T, An K. Cylindrical microcavity laser based on the evanescent-wave-coupled gain[J]. Physical Review Letters, 85, 3161-3164(2000). http://europepmc.org/abstract/MED/11019291

    [36] Azzouz H, Alkhafadiji L, Balslev S et al. Levitated droplet dye laser[J]. Optics Express, 14, 4374(2006).

    [37] Kiraz A, Sennaroglu A. Do anay S, et al. Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface [J]. Optics Communications, 276, 145-148(2007). http://www.sciencedirect.com/science/article/pii/S0030401807004324

    [38] Jiang X S, Song Q H, Xu L et al. Microfiber knot dye laser based on the evanescent-wave-coupled gain[J]. Applied Physics Letters, 90, 233501(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4827265

    [39] Tanyeri M, Perron R, Kennedy I M. Lasing droplets in a microfabricated channel[J]. Optics Letters, 32, 2529-2531(2007). http://www.opticsinfobase.org/abstract.cfm?uri=ol-32-17-2529

    [40] Tang S K, Li Z Y, Abate A R et al. A multi-color fast-switching microfluidic droplet dye laser[J]. Lab on a Chip, 9, 2767-2771(2009). http://europepmc.org/abstract/MED/19967111

    [41] Humar M, Gather M C, Yun S H. Cellular dye lasers: lasing thresholds and sensing in a planar resonator[J]. Optics Express, 23, 27865-27879(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4646517/

    [42] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. Journal of Cellular and Comparative Physiology, 59, 223-239(1962). http://www.bioone.org/servlet/linkout?suffix=i1543-706X-36-3-205-Shimomura1&dbid=8&doi=10.1290%2F1071-2690(2000)0362.0.CO%3B2&key=13911999

    [43] Chen Y, Wei L N, Müller J D. Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 15492-15497(2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000007000002000035000001&idtype=cvips&gifs=Yes

    [44] Lu P, Vogel C, Wang R et al. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation[J]. Nature Biotechnology, 25, 117-124(2007). http://bfg.oxfordjournals.org/external-ref?access_num=10.1038/nbt1270&link_type=DOI

    [45] Gather M C, Yun S H. Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein[J]. Optics Letters, 36, 3299-3301(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-16-3299

    [46] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [47] He L N, ÖzdemirŞ K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2012).

    [48] Ashkin A, Dziedzic J M. Observation of resonances in the radiation pressure on dielectric spheres[J]. Physical Review Letters, 38, 1351-1354(1977). http://prola.aps.org/abstract/PRL/v38/i23/p1351_1

    [49] Tzeng H M, Wall K F, Long M B et al. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances[J]. Optics Letters, 9, 499-501(1984). http://www.ncbi.nlm.nih.gov/pubmed/19721646

    [50] Yang L, Vahala K J. Gain functionalization of silica microresonators[J]. Optics Letters, 28, 592-594(2003). http://www.ncbi.nlm.nih.gov/pubmed/12703910

    [51] Takashima H, Fujiwara H, Takeuchi S et al. Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus[J]. Applied Physics Letters, 90, 101103(2007). http://scitation.aip.org/content/aip/journal/apl/90/10/10.1063/1.2711384

    [52] Snee P T, Chan Y, Nocera D G et al. Whispering-gallery-mode lasing from a semiconductor Nanocrystal/Microsphere resonator composite[J]. Advanced Materials, 17, 1131-1136(2005). http://onlinelibrary.wiley.com/doi/10.1002/adma.200401571/full

    [53] McCall S L, Levi A F J, Slusher R E et al. . Whispering‐gallery mode microdisk lasers[J]. Applied Physics Letters, 60, 289-291(1992). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4878608

    [54] Van Campenhout J, Rojo-Romeo P, Regreny P et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit[J]. Optics Express, 15, 6744-6749(2007). http://europepmc.org/abstract/MED/19546984

    [55] Chao C Y, Guo L J. Polymer microring resonators fabricated by nanoimprint technique[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 20, 2862(2002). http://scitation.aip.org/content/avs/journal/jvstb/20/6/10.1116/1.1521729

    [56] Dong C H, He L, Xiao Y F et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing[J]. Applied Physics Letters, 94, 231119(2009). http://scitation.aip.org/content/aip/journal/apl/94/23/10.1063/1.3152791

    [57] Humar M, Yun S H. Intracellular microlasers[J]. Nature Photonics, 9, 572-576(2015).

    [58] Fan X D, Yun S H. Optofluidic bio-Lasers: concept and applications[J]. Nature Methods, 11, 141-147(2014). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162132

    [59] Humar M, Yun S H. Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies[J]. Optica, 4, 222-228(2017). http://europepmc.org/abstract/MED/29046889

    [60] Schubert M, Volckaert K, Karl M et al. Lasing in live mitotic and non-phagocytic cells by efficient delivery of microresonators[J]. Scientific Reports, 7, 40877(2017). http://www.nature.com/articles/srep40877

    [61] Humar M, Upadhya A, Yun S H. Spectral reading of optical resonance-encoded cells in microfluidics[J]. Lab on a Chip, 17, 2777-2784(2017). http://europepmc.org/abstract/MED/28686280

    [62] Kim Y R, Kim S, Choi J W et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer[J]. Theranostics, 5, 805-817(2015). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM26000054.aspx

    [63] Hell S W. Far-field optical nanoscopy[J]. Science, 316, 1153-1158(2007).

    [64] Wang M C, Min W, Freudiger C W et al. RNAi screening for fat regulatory genes with SRS microscopy[J]. Nature Methods, 8, 135-138(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3061290/

    [65] Min W, Lu S J, Chong S S et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy[J]. Nature, 461, 1105-1109(2009). http://www.ncbi.nlm.nih.gov/pubmed/19847261

    [66] Wang P, Slipchenko M N, Mitchell J et al. Far-field imaging of non-fluorescent species with sub-diffraction resolution[J]. Nature Photonics, 7, 449-453(2013). http://europepmc.org/abstract/med/24436725

    [67] Polson R C, Vardeny Z V. Random lasing in human tissues[J]. Applied Physics Letters, 85, 1289-1291(2004). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4875835

    [68] Nadkarni S K, Bouma B E, Helg T et al. Characterization of atherosclerotic plaques by laser speckle imaging[J]. Circulation, 112, 885-892(2005). http://www.ncbi.nlm.nih.gov/pubmed/16061738

    [69] Humar M, Dobravec A, Zhao X W et al. Biomaterial microlasers implantable in the cornea, skin, and blood[J]. Optica, 4, 1080-1085(2017).

    [70] Prasad P N[M]. Introduction to biophotonics(2006).

    Mengcong Du, Qianqian Liu, Lang Marion, Xiuhong Wang, Pu Wang. Research Progress and Application of Cell Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120001
    Download Citation