• Photonics Research
  • Vol. 8, Issue 11, 1662 (2020)
Xinxin Li1、2、3, Zhen Deng1、3、4、*, Jun Li1、3, Yangfeng Li1、3, Linbao Guo1、2、3, Yang Jiang1、3, Ziguang Ma1、3, Lu Wang1、3, Chunhua Du1、3、4, Ying Wang5, Qingbo Meng1、3, Haiqiang Jia1、3、6, Wenxin Wang1、3、6, Wuming Liu1, and Hong Chen1、3、6、7
Author Affiliations
  • 1Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4The Yangtze River Delta Physics Research Center, Liyang 213000, China
  • 5Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
  • 6Songshan Lake Materials Laboratory, Dongguan 523808, China
  • 7e-mail: hchen@iphy.ac.cn
  • show less
    DOI: 10.1364/PRJ.398450 Cite this Article Set citation alerts
    Xinxin Li, Zhen Deng, Jun Li, Yangfeng Li, Linbao Guo, Yang Jiang, Ziguang Ma, Lu Wang, Chunhua Du, Ying Wang, Qingbo Meng, Haiqiang Jia, Wenxin Wang, Wuming Liu, Hong Chen. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current[J]. Photonics Research, 2020, 8(11): 1662 Copy Citation Text show less
    References

    [1] D. Prather, S. Shi, J. Murakowski, G. Schneider, A. Sharkawy, C. Chen, B. Miao. Silicon-Based Photonic Crystal Structures: From Design to Realization, 47-93(2008).

    [2] D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. Kimerling, J. Michel, J. Chen, F. Kärtner. High performance, waveguide integrated Ge photodetectors. Opt. Express, 15, 3916-3921(2007).

    [3] D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. Krishnamoorthy, M. Asghari Khiavi. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett., 95, 261105(2009).

    [4] A. Beling, J. C. Campbell. InP-based high-speed photodetectors. J. Lightwave Technol., 27, 343-355(2009).

    [5] E. Peiner, A. Guttzeit, H.-H. Wehmann. The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III–V compound semiconductors on silicon. J. Phys. Condens. Matter, 14, 13195-13201(2002).

    [6] Y.-T. Sun, K. Baskar, S. Lourdudoss. Thermal strain in indium phosphide on silicon obtained by epitaxial lateral overgrowth. J. Appl. Phys., 94, 2746-2748(2003).

    [7] Z. Sheng, L. Liu, J. Brouckaert, S. He, D. Thourhout. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides. Opt. Express, 18, 1756-1761(2010).

    [8] L. Pavesi, L. Negro, C. Mazzoleni, G. Franzo, F. Priolo. Optical gain in Si nanocrystals. Nature, 408, 440-444(2000).

    [9] J. Michel, J. Liu, L. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 4, 527-534(2010).

    [10] H. Meng, A. Atabaki, J. S. Orcutt, R. J. Ram. Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength. Opt. Express, 23, 32643-32653(2015).

    [11] T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi. All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip. Appl. Phys. Lett., 96, 101103(2010).

    [12] T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, M. Asghari. Silicon waveguide two-photon absorption detector at 1.5  mu m wavelength for autocorrelation measurements. Appl. Phys. Lett., 81, 1323-1325(2002).

    [13] H. Chen, A. Poon. Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators. Appl. Phys. Lett., 96, 191106(2010).

    [14] M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, S. Yazdi, P. Nordlander, N. Halas. Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photon., 5, 3472-3477(2018).

    [15] B. Desiatov, I. Goykhman, J. Shappir, U. Levy. Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band. Appl. Phys. Lett., 104, 091105(2014).

    [16] D. A. Willis, V. Grosu. Microdroplet deposition by laser-induced forward transfer. Appl. Phys. Lett., 86, 244103(2005).

    [17] J. Doylend, P. Jessop, A. Knights. Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection. Opt. Express, 18, 14671-14678(2010).

    [18] H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu, Z. Q. Ma. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering. Appl. Phys. Lett., 106, 093508(2015).

    [19] D. H. Shin, S. Kim, J. M. Kim, C. W. Jang, J. H. Kim, K. W. Lee, J. Kim, S. D. Oh, D. H. Lee, S. S. Kang, C. O. Kim, S. H. Choi, K. J. Kim. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect. Adv. Mater., 27, 2614-2620(2015).

    [20] S. Y. Zhu, M. B. Yu, G. Q. Lo, D. L. Kwong. Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl. Phys. Lett., 92, 081103(2008).

    [21] M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto. Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550  nm. Opt. Express, 20, 12599-12609(2012).

    [22] M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, G. Coppola. Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide. Appl. Phys. Lett., 96, 241112(2010).

    [23] S. Sze. Physics of Semiconductor Devices(1981).

    [24] W. Diels, M. Steyaert, F. Tavernier. Schottky photodiodes in bulk CMOS for high-speed 1310/1550  nm optical receivers. IEEE J. Sel. Top. Quantum Electron., 24, 1-8(2018).

    [25] Z. Huang, Y. Mao, G. Lin, X. Yi, A. Chang, C. Li, S. Chen, W. Huang, J. Wang. Low dark current broadband 360–1650  nm ITO/Ag/n-Si Schottky photodetectors. Opt. Express, 26, 5827-5834(2018).

    [26] G.-J. Horng, C.-Y. Chang, C. Ho, C.-Y. Lee, T. Y. Huang. The effects of growth temperature on the microstructure and electrical barrier height in PtSi/p-Si(100) Schottky barrier detector. Thin Solid Films, 374, 80-84(2000).

    [27] P. Srivastava, M. Shin, K.-R. Lee, H. Mizuseki, S. Kim. The Schottky barrier modulation at PtSi/Si interface by strain and structural deformation. AIP Adv., 5, 087109(2015).

    [28] R. T. Tung. Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R, 35, 1-138(2001).

    [29] M. Patel, H. S. Kim, H. H. Park, J. Kim. Silver nanowires-templated metal oxide for broadband Schottky photodetector. Appl. Phys. Lett., 108, 141904(2016).

    [30] J. Yun, M. Kumar, Y. Park, H.-S. Kim, J. Kim. High performing ITO/Ge heterojunction photodetector for broad wavelength detection. J. Mater. Sci. Mater. Electron., 26, 6099-6106(2015).

    [31] H.-S. Kim, M. D. Kumar, M. Patel, J. Kim. High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse. Sens. Actuators A, 252, 35-41(2016).

    [32] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett., 11, 2219-2224(2011).

    [33] I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, A. Ferrari. On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett., 16, 3005-3013(2016).

    [34] M. Alavirad, A. Olivieri, L. Roy, P. Berini. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors. Opt. Express, 24, 22544-22554(2016).

    [35] X. Xu, Z. Liu, Y. Wang. Step-directed deposition of Au nanostructures by electron beam evaporation. J. Rare Earth, 22, 141-144(2004).

    [36] S. K. Cheung, N. W. Cheung. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Appl. Phys. Lett., 49, 85-87(1986).

    [37] W. Mönch. On metal-semiconductor surface barriers. Surf. Sci., 21, 443-446(1970).

    [38] Z. Huang, Y. Mao, A. Chang, H. Hong, C. Li, S. Chen, W. Huang, J. Wang. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800–1650  nm detection. Appl. Phys. Express, 11, 102203(2018).

    [39] M. Amirmazlaghani, F. Raissi, O. Habibpour, J. Vukusic, J. Stake. Graphene-Si Schottky IR detector. IEEE J. Quantum Electron., 49, 589-594(2013).

    [40] B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, U. Levy. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2, 335-338(2015).

    [41] S. Roy, K. Midya, S. Duttagupta, D. Ramakrishnan. Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation. J. Appl. Phys., 116, 124507(2014).

    [42] Y. Pei, R. Pei, L. Xiaoci, Y. Wang, L. Liu, H. Chen, J. Liang. CdS-nanowires flexible photo-detector with Ag-nanowires electrode based on non-transfer process. Sci. Rep., 6, 21551(2016).

    CLP Journals

    [1] Hao Ma, Yuanan Zhao, Yuchen Shao, Yafei Lian, Weili Zhang, Guohang Hu, Yuxin Leng, Jianda Shao. Principles to tailor the saturable and reverse saturable absorption of epsilon-near-zero material[J]. Photonics Research, 2021, 9(5): 678

    Xinxin Li, Zhen Deng, Jun Li, Yangfeng Li, Linbao Guo, Yang Jiang, Ziguang Ma, Lu Wang, Chunhua Du, Ying Wang, Qingbo Meng, Haiqiang Jia, Wenxin Wang, Wuming Liu, Hong Chen. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current[J]. Photonics Research, 2020, 8(11): 1662
    Download Citation