• Photonics Research
  • Vol. 7, Issue 7, 783 (2019)
Ashik A. S.1、*, Callum F. O’Donnell2、3, S. Chaitanya Kumar2、3, M. Ebrahim-Zadeh2、3、4, P. Tidemand-Lichtenberg1, and C. Pedersen1
Author Affiliations
  • 1DTU Fotonik, Technical University of Denmark, DK-4000 Roskilde, Denmark
  • 2Radiantis, Edifici RDIT, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
  • 3ICFO-Institut de Ciències Fotòniques, Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
  • 4Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
  • show less
    DOI: 10.1364/PRJ.7.000783 Cite this Article Set citation alerts
    Ashik A. S., Callum F. O’Donnell, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, C. Pedersen. Mid-infrared upconversion imaging using femtosecond pulses[J]. Photonics Research, 2019, 7(7): 783 Copy Citation Text show less
    References

    [1] J. M. Chalmers, P. R. Griffiths. Handbook of Vibrational Spectroscopy(2002).

    [2] M. J. Walsh, R. K. Reddy, R. Bhargava. Label-free biomedical imaging with mid-IR spectroscopy. IEEE J. Sel. Top. Quantum Electron., 18, 1502-1513(2012).

    [3] D. Richter, A. Fried, P. Weibring. Difference frequency generation laser based spectrometers. Laser Photon. Rev., 3, 343-354(2009).

    [4] S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, E. Goormaghtigh. Change in the microenvironment of breast cancer studied by FTIR imaging. Analyst, 138, 4058-4065(2013).

    [5] G. Shetty, C. Kendall, N. Shepherd, N. Stone, H. Barr. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br. J. Cancer, 94, 1460-1464(2006).

    [6] R. Bhargava. Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal. Bioanal. Chem., 389, 1155-1169(2007).

    [7] C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, G. Holl. Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives. Appl. Phys. B, 92, 327-333(2008).

    [8] A. Rogalski. Infrared Detectors(2010).

    [9] J. E. Midwinter, J. Warner. Up-conversion of near infrared to visible radiation in lithium-meta-niobate. J. Appl. Phys., 38, 519-523(1967).

    [10] J. Warner. Parametric up-conversion from the infrared. J. Opto-Electron., 3, 37-48(1971).

    [11] M. El-Sayed, M. Mohamed, C. Burda, S. Link. The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: assignment of the transient features by carrier quenching. J. Phys. Chem. B, 105, 12286-12292(2001).

    [12] C. Bonetti, M. T. A. Alexandre, I. H. M. Van Stokkum, R. G. Hiller, M. L. Groot, R. Van Grondelle, J. T. M. Kennis. Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study. Phys. Chem. Chem. Phys., 12, 9256-9266(2010).

    [13] H. K. Nienhuys, R. A. Van Santen, H. J. Bakker. Orientational relaxation of liquid water molecules as an activated process. J. Chem. Phys., 112, 8487-8494(2000).

    [14] J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, R. A. Niesner. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys. J., 98, 715-723(2010).

    [15] N. Huang, H. Liu, Z. Wang, J. Han, S. Zhang. Femtowatt incoherent image conversion from mid-infrared light to near-infrared light. Laser Phys., 27, 035401(2017).

    [16] A. J. Torregrosa, H. Maestre, J. Capmany. Intra-cavity upconversion to 631  nm of images illuminated by an eye-safe ASE source at 1550  nm. Opt. Lett., 40, 5315-5318(2015).

    [17] M. Mathez, P. J. Rodrigo, P. Tidemand-Lichtenberg, C. Pedersen. Upconversion imaging using short-wave infrared picosecond pulses. Opt. Lett., 42, 579-582(2017).

    [18] S. Wolf, T. Trendle, J. Kiessling, J. Herbst, K. Buse, F. Kühnemann. Self-gated mid-infrared short pulse upconversion detection for gas sensing. Opt. Express, 25, 24459-24468(2017).

    [19] L. Pattelli, R. Savo, M. Burresi, D. S. Wiersma. Spatio-temporal visualization of light transport in complex photonic structures. Light Sci. Appl., 5, e16090(2016).

    [20] H. Maestre, A. J. Torregrosa, J. Capmany. IR image upconversion using band-limited ASE illumination fiber sources. Opt. Express, 24, 8581-8593(2016).

    [21] P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, C. Pedersen. Mid-infrared upconversion spectroscopy. J. Opt. Soc. Am. B, 33, D28-D35(2016).

    [22] R. W. Boyd. Nonlinear Optics(2008).

    [23] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics(2013).

    [24] J. S. Dam, C. Pedersen, P. Tidemand-Lichtenberg. Theory for upconversion of incoherent images. Opt. Express, 20, 1475-1482(2012).

    [25] C. Pedersen, Q. Hu, L. Høgstedt, P. Tidemand-Lichtenberg, J. S. Dam. Non-collinear upconversion of infrared light. Opt. Express, 22, 28027-28036(2014).

    [26] C. Pedersen, E. Karamehmedović, J. S. Dam, P. Tidemand-Lichtenberg. Enhanced 2D-image upconversion using solid-state lasers. Opt. Express, 17, 20885-20890(2009).

    CLP Journals

    [1] Rocio Camacho-Morales, Davide Rocco, Lei Xu, Valerio Flavio Gili, Nikolay Dimitrov, Lyubomir Stoyanov, Zhonghua Ma, Andrei Komar, Mykhaylo Lysevych, Fouad Karouta, Alexander Dreischuh, Hark Hoe Tan, Giuseppe Leo, Costantino De Angelis, Chennupati Jagadish, Andrey E. Miroshnichenko, Mohsen Rahmani, Dragomir N. Neshev. Infrared upconversion imaging in nonlinear metasurfaces[J]. Advanced Photonics, 2021, 3(3): 036002

    [2] Hongqiang Xie, Hongbin Lei, Guihua Li, Jinping Yao, Qian Zhang, Xiaowei Wang, Jing Zhao, Zhiming Chen, Ya Cheng, Zengxiu Zhao. Controlling the collective radiative decay of molecular ions in strong laser fields[J]. Photonics Research, 2021, 9(10): 2046

    Ashik A. S., Callum F. O’Donnell, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, C. Pedersen. Mid-infrared upconversion imaging using femtosecond pulses[J]. Photonics Research, 2019, 7(7): 783
    Download Citation