• Photonics Research
  • Vol. 5, Issue 5, 450 (2017)
Jian Liu1、2 and Ka-Di Zhu1、2、*
Author Affiliations
  • 1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), 800 DongChuan Road, Shanghai 200240, China
  • 2School of Physics and Astronomy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.5.000450 Cite this Article Set citation alerts
    Jian Liu, Ka-Di Zhu. Coupled quantum molecular cavity optomechanics with surface plasmon enhancement[J]. Photonics Research, 2017, 5(5): 450 Copy Citation Text show less
    References

    [1] S. Berweger, C. C. Neacsu, Y. Mao, H. Zhou, S. S. Wong, M. B. Raschke. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol., 4, 496-499(2009).

    [2] E. M. van Schrojenstein Lantman, T. Deckert-Gaudig, A. J. G. Mank, V. Deckert, B. M. Weckhuysen. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol., 7, 583-586(2012).

    [3] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc., 130, 12616-12617(2008).

    [4] D. Wang, W. Zhu, M. D. Best, J. P. Camden, K. B. Crozier. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett., 13, 2194-2198(2013).

    [5] M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, R. P. Van Duyne. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C, 116, 478-483(2012).

    [6] J. Steidtner, B. Pettinger. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15  nm resolution. Phys. Rev. Lett., 100, 236101(2008).

    [7] R. Treffer, X. Lin, E. Bailo, T. D. Gaudig, V. Deckert. Distinction of nucleobases-a tip-enhanced Raman approach. Beilstein J. Nanotechnol., 2, 628-637(2011).

    [8] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Lou, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [9] R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [10] W. Zhu, K. B. Crozier. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun., 5, 5228-5236(2014).

    [11] P. Mülschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl. Resonant optical antennas. Science, 308, 1607-1609(2005).

    [12] D. R. Ward, F. Hüer, F. Pauly, J. C. Cuevas, D. Natelson. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol., 5, 732-736(2010).

    [13] S. Gwo, C. Y. Wang, H. Y. Chen, M. H. Lin, L. Sun, X. Li, W. L. Chen, Y. M. Chang, H. Ahn. Plasmonic metasurfaces for nonlinear optics and quantitative SERS. ACS Photon., 3, 1371-1384(2016).

    [14] X. M. Qian, S. M. Nie. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev., 37, 912-920(2008).

    [15] J. Prinz, C. Heck, L. Ellerik, V. Merk, I. Bald. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity. Nanoscale, 8, 5612-5620(2016).

    [16] P. Roelli, C. Galland, N. Piro, T. J. Kippenberg. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol., 11, 164-169(2016).

    [17] M. K. Schmidt, J. Aizpurua. Nanocavities: optomechanics goes molecular. Nat. Nanotechnol., 11, 114-115(2016).

    [18] T. Hugel, M. Seitz. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun., 22, 989-1016(2001).

    [19] S. Kawai, A. S. Foster, T. Björkman, S. Nowakowska, J. Björk, F. F. Canova, L. H. Gade, T. A. Jung, E. Meyer. Van der Waals interactions and the limits of isolated atom models at interfaces. Nat. Commun., 7, 11559(2016).

    [20] S. P. Jarvis, M. A. Rashid, A. Sweetman, J. Leaf, S. Taylor, P. Moriarty, J. Dunn. Intermolecular artifacts in probe microscope images of C60 assemblies. Phys. Rev. B, 92, 241405(2015).

    [21] L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye, A. Browaeys. Direct measurement of the van der Waals interaction between two Rydberg atoms. Phys. Rev. Lett., 110, 263201(2013).

    [22] G. Ranjit, M. Cunningham, K. Casey, A. A. Geraci. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A, 93, 053801(2016).

    [23] S. B. Smith, L. Finzi, C. Bustamante. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, 1122-1126(1992).

    [24] C. Gourier, A. Jegou, J. Husson, F. Pincet. A nanospring named erythrocyte. The biomembrane force probe. Cell. Mol. Bioeng., 1, 263-275(2008).

    [25] S. Jiang, Y. Zhang, R. Zhang, C. Hu, M. Liao, Y. Lou, J. Yang, Z. Dong, J. G. Hou. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol., 10, 865-869(2015).

    [26] Y. Zhang, Y. Luo, Y. Zhang, Y. J. Yu, Y. M. Kuang, L. Zhang, Q. S. Meng, Y. Luo, J. L. Yang, Z. C. Dong, J. G. Hou. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature, 531, 623-627(2016).

    [27] J. A. Scholl, A. L. Koh, J. A. Dionne. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 483, 421-427(2012).

    [28] S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [29] K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg. Revealing the quantum regime in tunnelling plasmonics. Nature, 491, 574-577(2012).

    [30] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, R. J. Schoelkopf. A Schrödinger cat living in two boxes. Science, 352, 1087-1091(2016).

    [31] C. Kittel. Introduction to Solid State Physics, 43-44(2005).

    [32] K. R. Brown, C. Ospelkaus, Y. Colombe, A. C. Wilson, D. Leibfried, D. J. Wineland. Coupled quantized mechanical oscillators. Nature, 471, 196-199(2011).

    [33] P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, Z. M. Zhang. Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A, 90, 043825(2014).

    [34] C. Gardiner, P. Zoller. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 425(2000).

    [35] V. Giovannetti, D. Vitali. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A, 63, 023812(2001).

    [36] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [37] C. Humbert, O. Pluchery, E. Lacaze, A. Tadjeddine, B. Busson. A multiscale description of molecular adsorption on gold nanoparticles by nonlinear optical spectroscopy. Phys. Chem. Chem. Phys., 14, 280-289(2012).

    CLP Journals

    [1] Biao Xiong, Xun Li, Shi-Lei Chao, Zhen Yang, Wen-Zhao Zhang, Weiping Zhang, Ling Zhou. Strong mechanical squeezing in an optomechanical system based on Lyapunov control[J]. Photonics Research, 2020, 8(2): 151

    [2] Seyed Mahmoud Ashrafi, Narjes Taghadomi, Alireza Bahrampour, Rasoul Malekfar. Coupled quantum molecular cavity optomechanics with surface plasmon enhancement: comment[J]. Photonics Research, 2020, 8(11): 1783

    [3] Pengyuan Chang, Bo Pang, Yisheng Wu, Jingbiao Chen. Excited-state population distributions of alkaline-earth metal in a hollow cathode lamp[J]. Chinese Optics Letters, 2018, 16(3): 033001

    Jian Liu, Ka-Di Zhu. Coupled quantum molecular cavity optomechanics with surface plasmon enhancement[J]. Photonics Research, 2017, 5(5): 450
    Download Citation