• Journal of Inorganic Materials
  • Vol. 37, Issue 4, 404 (2022)
References

[1] F MEEMKEN, A BAIKER. Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts. Chemical Reviews, 117, 11522-11569(2017).

[2] M DHIMAN, B CHALKE, V POLSHETTIWAR. Organosilane oxidation with a half million turnover number using fibrous nanosilica supported ultrasmall nanoparticles and pseudo-single atoms of gold. Journal of Materials Chemistry A, 5, 1935-1940(2017).

[3] V P SANTOS, S A C CARABINEIRO, P B TAVARES et al. Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Applied Catalysis B: Environmental, 99, 198-205(2010).

[4] M LIU, F HOF, M MORO et al. Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. Nanoscale, 12, 20165-20170(2020).

[5] Y P ZHANG, Y ZHOU, Y ZHAO et al. Recent progresses in the size and structure control of MOF supported noble metal catalysts. Catalysis Today, 263, 61-68(2016).

[6] T KASHYAP, S BISWASI, A R PAL et al. Unraveling the catalytic and plasmonic roles of g-C3N4 supported Ag and Au nanoparticles under selective photoexcitation. ACS Sustainable Chemistry & Engineering, 7, 19295-19302(2019).

[7] S J MAO, C P WANG, Y WANG. The chemical nature of N doping on N doped carbon supported noble metal catalysts. Journal of Catalysis, 375, 456-465(2019).

[8] J XU, J Y ZHANG, H G PENG et al. Ag supported on meso- structured SiO2 with different morphologies for CO oxidation: on the inherent factors influencing the activity of Ag catalysts. Microporous and Mesoporous Materials, 242, 90-98(2017).

[9] X D LE, Z P DONG, Y S LIU et al. Palladium nanoparticles immobilized on core-shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. Journal of Materials Chemistry A, 2, 19696-19706(2014).

[10] B SINGH, V POLSHETTIWAR. Design of CO2 sorbents using functionalized fibrous nanosilica (KCC-1): insights into the effect of the silica morphology (KCC-1 vs. MCM-41). Journal of Materials Chemistry A, 4, 7005-7019(2016).

[11] R SINGH, R BAPAT, L QIN et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catalysis, 6, 2770-2784(2016).

[12] A MAITY, R BELGAMWAR, V POLSHETTIWAR. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO2 capture. Nature Protocols, 14, 2177-2204(2019).

[13] V POLSHETTIWAR, D CHA, X ZHANG et al. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angewandte Chemie International Edition, 49, 9652-9656(2010).

[14] Y WANG, J TANG, Y N YANG et al. Functional nanoparticles with a reducible tetrasulfide motif to upregulate mRNA translation and enhance transfection in hard-to-transfect cells. Angewandte Chemie International Edition, 59, 2695-2699(2020).

[15] Z P DONG, X D LE, X L LI et al. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Applied Catalysis B Environmental, 158, 129-135(2014).

[16] Z P DONG, X D LE, C X DONG et al. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Applied Catalysis B Environmental, 162, 372-380(2015).

[17] X D LE, Z P DONG, W ZHANG et al. Fibrous nano-silica containing immobilized Ni@Au core-shell nanoparticles: a highly active and reusable catalyst for the reduction of 4-nitrophenol and 2-nitroaniline. Journal of Molecular Catalysis A: Chemical, 395, 58-65(2014).

[18] Y B WANG, J HE, Y M SHI et al. Structure- dependent adsorptive or photocatalytic performances of solid and hollow dendritic mesoporous silica&titania nanospheres. Microporous and Mesoporous Materials, 305, 110326(2020).

[19] Y B WANG, J HE, X L LI et al. Dendritic mesoporous silica&titania nanospheres (DMSTNs) coupled with amorphous carbon nitride (ACN) for improved visible-light-driven hydrogen production. Applied Surface Science, 538, 148147(2021).

[20] Y B WANG, K K HU, J HE et al. Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach. RSC Advances, 9, 24783-24790(2019).

[21] A FIHRI, D CHA, M BOUHRARA et al. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions. ChemSusChem, 5, 85-89(2012).

[22] S M SADEGHZADEH. A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides. Green Chemistry, 17, 3059-3066(2015).

[23] J REN, Z LI, S S LIU et al. Silica-titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties. Catalysis Letters, 124, 185-194(2008).

[24] V VAIANO, M MATARANGOLO, J J MURCIA et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Applied Catalysis B: Environmental, 225, 197-206(2018).

[25] L Q JING, Y C QU, B Q WANG et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials and Solar Cells, 90, 1773-1787(2006).

[26] M Y S HAMID, M L FIRMANSYAH, S TRIWAHYONO et al. Oxygen vacancy-rich mesoporous silica KCC-1 for CO2 methanation. Applied Catalysis A General, 532, 86-94(2017).

[27] M JAKOB, H LEVANON, P V KAMAT. Charge distribution between UV-irradiated TiO2 and gold nanoparticles:  determination of shift in the fermi level. Nano Letters, 3, 353-358(2003).

[28] V SUBRAMANIAN, E E WOLF, P V KAMAT. Catalysis with TiO2/gold nanocomposites. effect of metal particle size on the fermi level equilibration. Journal of the American Chemical Society, 126, 4943-4950(2004).

[29] A CYBULA, J B PRIEBE, M M POHL et al. The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2. Applied Catalysis B: Environmental, 152-153, 202-211(2014).

[30] B LIU, Y JIANG, Y WANG et al. Influence of dimensionality and crystallization on visible-light hydrogen production of Au@TiO2 core-shell photocatalysts based on localized surface plasmon resonance. Catalysis Science&Technology, 8, 1094-1103(2018).

[31] M MISRA, S R CHOWDHURY, T I LEE. Sunlight driven decomposition of toxic organic compound, coumarin, p-nitrophenol, and photo reduction of Cr(VI) ions, using a bridge structure of Au@CNT@TiO2 nanocomposite. Applied Catalysis B: Environmental, 272, 118991(2020).

[32] A A ISMAIL, A HAKKI, D W BAHNEMANN. Mesostructure Au/TiO2 nanocomposites for highly efficient catalytic reduction of p-nitrophenol. Journal of Molecular Catalysis A: Chemical, 358, 145-151(2012).

[33] M Q HUANG, Y W ZHANG, Y M ZHOU et al. Synthesis and characterization of hollow ZrO2-TiO2/Au spheres as a highly thermal stability nanocatalyst. Journal of Colloid and Interface Science, 497, 23-32(2017).