• Matter and Radiation at Extremes
  • Vol. 6, Issue 4, 046903 (2021)
D. Calestani1、*, M. Villani1, G. Cristoforetti2, F. Brandi2, P. Koester2, L. Labate2, and L. A. Gizzi2
Author Affiliations
  • 1IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
  • 2ILIL, INO-CNR, Area della Ricerca CNR di Pisa, via G. Moruzzi 1, 56124 Pisa, Italy
  • show less
    DOI: 10.1063/5.0044148 Cite this Article
    D. Calestani, M. Villani, G. Cristoforetti, F. Brandi, P. Koester, L. Labate, L. A. Gizzi. Fabrication of ZnO-nanowire-coated thin-foil targets for ultra-high intensity laser interaction experiments[J]. Matter and Radiation at Extremes, 2021, 6(4): 046903 Copy Citation Text show less
    References

    [1] R.Loetzsch, O. N.Rosmej, L. P.Pugachev, S.Z?hter, C.Spielmann, D.Kartashov, M. E.Povarnitsyn, S.H?fer, M. C.Kaluza, N. E.Andreev, A.Schoenlein, Z.Samsonova, A.Hoffmann, I.Uschmann, C.Arda, D.Khaghani, A.Saevert. Generation of keV hot near-solid density plasma states at high contrast laser-matter interaction. Phys. Plasmas, 25, 083103(2018).

    [2] Z. M.Sheng, D.Umstadter, K.Flippo, K.Mima, V. Y.Bychenkov, G.Mourou, A.Maksimchuk, Y.Sentoku. High-energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B: Lasers Opt., 74, 207(2002).

    [3] K.Gopal, D. N.Gupta, S.Kumar. Proton acceleration from overdense plasma target interacting with shaped laser pulses in the presence of preplasmas. Plasma Phys. Controlled Fusion, 61, 085001(2019).

    [4] A.Giulietti, L. A.Gizzi, G.Cristoforetti, L.Fulgentini, F.Baffigi, S.Tudisco, P.Koester, A.Anzalone, G.D’Arrigo, L.Labate, G.Bussolino. Investigation on laser–plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target. Plasma Phys. Controlled Fusion, 56, 095001(2014).

    [5] G. S.Hicks, T.Ziegler, U.Schramm, H.Sakaki, Y.Watanabe, N.Iwata, H.Kiriyama, M. A.Alkhimova, N. P.Dover, A.Sagisaka, T. A.Pikuz, J. K.Koga, K.Zeil, E. J.Ditter, T.Miyahara, Y.Sentoku, Ko.Kondo, Z.Najmudin, M.Hata, M.Kando, M.Nishiuchi, A. Ya.Faenov, K.Kondo, A. S.Pirozhkov, O. C.Ettlinger, H. F.Lowe. Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states. Phys. Rev. Res., 2, 033081(2020).

    [6] F.Baffigi, G.Maero, L.Fulgentini, D.Terzani, G.Cristoforetti, A.Fazzi, L.Labate, M.Romé, D.Giove, R.Russo, P.Tomassini, F.Brandi, L. A.Gizzi, G.D’Arrigo, D.Palla, P.Koester. Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2 nanotube array targets. Plasma Phys. Controlled Fusion, 62, 114001(2020).

    [7] B. M.Luther, R.Hollinger, V. N.Shlyaptsev, C.Bargsten, A.Prieto, J. J.Rocca, A.Pukhov, S.Wang, L.Yin, M. A.Purvis, Y.Wang. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Photonics, 7, 796(2013).

    [8] J.Park, M. G.Capeluto, R.Hollinger, S.Wang, A.Rockwood, M.Klapisch, V.Kaymak, A.Pukhov, J. J.Rocca, R.Tommasini, D.Keiss, C.Bargsten, R.London, V. N.Shlyaptsev, Y.Wang, M.Busquet. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures. Sci. Adv., 3, e1601558(2017).

    [9] R.Hollinger, A.Townsend, J. J.Rocca, A.Pukhov, A.Prieto, V. N.Shlyaptsev, A.Curtis, C.Bargsten, A.Rockwood, Y.Wang, P.Stockton, M. G.Capeluto, V.Kaymak, S.Wang. Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime. Optica, 4, 1344(2017).

    [10] C.Riconda, A.Velyhan, M.Possolt, J.Pro?ka, J.Prok?pek, F.Réau, L.Labate, F.Baffigi, M.Passoni, A.Sgattoni, J.P?ikal, O.Tcherbakoff, L.Vassura, P.D’Oliveira, A.Bigongiari, F.Novotny, T.Ceccotti, M.Květon, V.Floquet, P.Martin, L. A.Gizzi, O.Klimo, A.Heron, M.Bougeard, L.?tolcoá, J.Fuchs, A.Macchi, M.Raynaud. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett., 111, 185001(2013).

    [11] R.Russo, G.Maero, D.Palla, P.Koester, G.Cristoforetti, M.Romé, F.Baffigi, P.Tomassini, D.Giove, G.D’Arrigo, L. A.Gizzi, A.Fazzi, D.Terzani, L.Fulgentini, L.Labate, F.Brandi. Intense proton acceleration in ultrarelativistic interaction with nanochannels. Phys. Rev. Res., 2, 033451(2020).

    [12] A.Macchi. Surface plasmons in superintense laser-solid interactions. Phys. Plasmas, 25, 031906(2018).

    [13] Y.Gu, Y.Tang, W.Wu, Y.Ji, G.Jiang, C.Wang. Efficient generation and transportation of energetic electrons in a carbon nanotube array target. Appl. Phys. Lett., 96, 041504(2010).

    [14] A.Handler, B. F.Shen, K. M.George, A.Zingale, D.Nasir, T.Rubin, J.Snyder, C.Willis, D. W.Schumacher, R. L.Daskalova, G. E.Cochran, P. L.Poole, L. L.Ji, E.Chowdhury. Relativistic laser driven electron accelerator using micro-channel plasma targets. Phys. Plasmas, 26, 033110(2019).

    [15] Y.Wang, S.Kasdorf, S.Wang, A.Rockwood, A.Pukhov, C.Calvi, V. N.Shlyaptsev, R.Hollinger, J. J.Rocca, A.Moreau, A.Curtis, V.Kaymak, M. G.Capeluto. Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities. Plasma Phys. Controlled Fusion, 62, 014013(2020).

    [16] Z. G.Deng, S. C.Ruan, Z. Y.Chen, Y.Yin, H. B.Zhuo, T. P.Yu, D. Y.Yu, F. Q.Shao, M. Y.Yu, X. R.Jiang, D. B.Zou, C. T.Zhou. Enhancement of target normal sheath acceleration in laser multi-channel target interaction. Phys. Plasmas, 26, 123105(2019).

    [17] F.Baffigi, G. R.Kumar, P. K.Singh, A. D.Lad, L. A.Gizzi, G.Chatterjee, D.Sarkar, M.Shaikh, R. G.Milazzo, G.D’Arrigo, P.Londrillo, J.Jha, G.Cristoforetti, M.Krishnamurthy, A.Adak. Transition from Coherent to Stochastic electron heating in ultrashort relativistic laser interaction with structured targets. Sci. Rep., 7, 1479(2017).

    [18] H.Daido, A. S.Pirozhkov, M.Nishiuchi. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 056401(2012).

    [19] V. Yu.Bychenkov, V. T.Tikhonchuk, E.d’Humieres, A.Brantov. Optimization of laser-target interaction for proton acceleration. Phys. Plasmas, 20, 023103(2013).

    [20] A.Sagisaka, Y.Watanabe, J. K.Koga, M. A.Alkhimova, A. S.Pirozhkov, Ko.Kondo, H.Sakaki, M.Nishiuchi, A. Ya.Faenov, K.Kondo, H.Kiriyama, Y.Sentoku, M.Hata, N. P.Dover, T.Miyahara, M.Kando, N.Iwata, T. A.Pikuz. Effect of small focus on electron heating and proton acceleration in ultrarelativistic laser-solid interactions. Phys. Rev. Lett., 124, 084802(2020).

    [21] F.Brandi, L. A.Gizzi, P.Cirrone, G.Cristoforetti, D.Giove, C.Altana et al. A new line for laser-driven light ions acceleration and related TNSA studies. Appl. Sci., 7, 984(2017).

    [22] M.Romé, L. A.Gizzi, P.Tomassini, L.Labate, G.Cristoforetti, D.Palla, F.Brandi, F.Baffigi, A.Fazzi, G.Bussolino, L.Fulgentini, P.Koester, G.Maero, D.Giove. Light ion accelerating line (L3IA): Test experiment at ILIL-PW. Nucl. Instrum. Methods Phys. Res., Sect. A, 909, 160(2018).

    [23] Y. F.Nicolau. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Appl. Surf. Sci., 22-23, 1061(1985).

    [24] P. K.Nair, A. E.Jimenez-Gonzailez. Photosensitive ZnO thin films prepared by the chemical deposition method SILAR. Semicond. Sci. Technol., 10, 1277(1995).

    [25] F.Pattini, D.Calestani, M.Villani, E.Gilioli, F.Bissoli, A.Zappettini. Solution-free and catalyst-free synthesis of ZnO-based nanostructured TCOs by PED and vapor phase growth techniques. Nanotechnology, 23, 194008(2012).

    [26] L.Lazzarini, R.Mosca, M.Zha, M.Mazzera, L.Zanotti, A.Zappettini, D.Calestani. Large-area self-catalysed and selective growth of ZnO nanowires. Nanotechnology, 19, 325603(2008).

    [27] M.Villani, M.Solzi, M.Culiolo, A.Zappettini, T.-Y.Kim, D.Calestani, D.Delmonte, S.-W.Kim, L.Marchini. Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials. Nanotechnology, 29, 335501(2018).

    [28] D.Delmonte, L.Marchini, M.Solzi, N.Coppedè, M.Villani, D.Calestani, A.Zappettini, R.Bercella, M.Culiolo. Turning carbon fiber into a stress-sensitive composite material. J. Mater. Chem. A, 4, 10486(2016).

    [29] O.Chaix-Pluchery, V.Consonni, E.Appert, R.Parize, J. D.Garnier. Effects of polyethylenimine and its molecular weight on the chemical bath deposition of ZnO nanowires. ACS Omega, 3, 12457(2018).

    [30] A.Sgattoni, P.Londrillo, G.Turchetti, C.Benedetti. ALaDyn: A high-accuracy PIC code for the Maxwell–Vlasov equations. IEEE Trans. Plasma Sci., 36, 1790(2008).

    [31] P.Londrillo, A.Adak, A. D.Lad, M.Shaikh, P. K.Singh, D.Sarkar, M.Krishnamurthy, G.Ravindra Kumar, J.Jha, L. A.Gizzi, G.D’Arrigo, G.Cristoforetti, G.Chatterjee. Silicon nanowire based high brightness, pulse relativistic electron source. APL Photonics, 2, 066105(2017).

    D. Calestani, M. Villani, G. Cristoforetti, F. Brandi, P. Koester, L. Labate, L. A. Gizzi. Fabrication of ZnO-nanowire-coated thin-foil targets for ultra-high intensity laser interaction experiments[J]. Matter and Radiation at Extremes, 2021, 6(4): 046903
    Download Citation