• Photonics Research
  • Vol. 9, Issue 7, 1397 (2021)
Francesco Arcadio1, Luigi Zeni1, Domenico Montemurro2, Caterina Eramo1, Stefania Di Ronza1, Chiara Perri1, Girolamo D’Agostino3, Guido Chiaretti3, Giovanni Porto3, and Nunzio Cennamo1、*
Author Affiliations
  • 1Department of Engineering, University of Campania Luigi Vanvitelli, Aversa 81031, Italy
  • 2Department of Physics E. Pancini, University of Naples Federico II, Naples 80126, Italy
  • 3Moresense Srl, Filarete Foundation, Milan 20139, Italy
  • show less
    DOI: 10.1364/PRJ.424006 Cite this Article Set citation alerts
    Francesco Arcadio, Luigi Zeni, Domenico Montemurro, Caterina Eramo, Stefania Di Ronza, Chiara Perri, Girolamo D’Agostino, Guido Chiaretti, Giovanni Porto, Nunzio Cennamo. Biochemical sensing exploiting plasmonic sensors based on gold nanogratings and polymer optical fibers[J]. Photonics Research, 2021, 9(7): 1397 Copy Citation Text show less
    References

    [1] Y. Chen, H. Ming. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photon. Sens., 2, 37-49(2012).

    [2] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sens. Actuators B Chem., 54, 3-15(1999).

    [3] K. M. Mayer, J. H. Hafner. Localized surface plasmon resonance sensors. Chem. Rev., 111, 3828-3857(2011).

    [4] L. Tong, H. Wei, S. Zhang, H. Xu. Recent advances in plasmonic sensors. Sensors, 14, 7959-7973(2014).

    [5] S. Unser, I. Bruzas, J. He, L. Sagle. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors, 15, 15684-15716(2015).

    [6] P. Singh. SPR biosensors: historical perspectives and current challenges. Sens. Actuators B Chem., 229, 110-130(2016).

    [7] Y. E. Monfared. Overview of recent advances in the design of plasmonic fiber-optic biosensors. Biosensors, 10, 77(2020).

    [8] J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108, 462-493(2008).

    [9] S. Chen, Y. Liu, Z. Liu, S. Chu, W. Peng. Micro-capillary-based self-referencing surface plasmon resonance biosensor for determination of transferrin. Appl. Opt., 55, 8571-8575(2016).

    [10] G.-S. Liu, X. Xiong, S. Hu, W. Shi, Y. Chen, W. Zhu, H. Zheng, J. Yu, N. H. Azeman, Y. Luo, Z. Chen. Photonic cavity enhanced high-performance surface plasmon resonance biosensor. Photon. Res., 8, 448-456(2020).

    [11] S. Kumar, B. K. Kaushik, R. Singh, N.-K. Chen, Q. S. Yang, X. Zhang, W. Wang, B. Zhang. LSPR-based cholesterol biosensor using a tapered optical fiber structure. Biomed. Opt. Express, 10, 2150-2160(2019).

    [12] N. Cennamo, A. Donà, P. Pallavicini, G. D’Agostino, G. Dacarro, L. Zeni, M. Pesavento. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens. Actuators B Chem., 208, 291-298(2015).

    [13] S. Kumar, R. Singh, Q. Yang, S. Cheng, B. Zhang, B. K. Kaushik. Highly sensitive, selective and portable sensor probe using germanium-doped photosensitive optical fiber for ascorbic acid detection. IEEE Sens. J., 21, 62-70(2021).

    [14] R. Singh, S. Kumar, F.-Z. Liu, C. Shuang, B. Zhang, R. Jha, B. K. Kaushik. Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosens. Bioelectron., 168, 112557(2020).

    [15] L. Zeni, C. Perri, N. Cennamo, F. Arcadio, G. D’Agostino, M. Salmona, M. Beeg, M. Gobbi. A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci. Rep., 10, 11154(2020).

    [16] N. Cennamo, F. Arcadio, C. Perri, L. Zeni, F. Sequeira, L. Bilro, R. Nogueira, G. D’Agostino, G. Porto, A. Biasiolo. Water monitoring in smart cities exploiting plastic optical fibers and molecularly imprinted polymers. The case of PFBS detection. IEEE International Symposium on Measurements & Networking (M&N), 1-6(2019).

    [17] N. Cennamo, F. Arcadio, A. Minardo, D. Montemurro, L. Zeni. Experimental characterization of plasmonic sensors based on lab-built tapered plastic optical fibers. Appl. Sci., 10, 4389(2020).

    [18] N. Cennamo, F. Mattiello, L. Zeni. Slab waveguide and optical fibers for novel plasmonic sensor configurations. Sensors, 17, 1488(2017).

    [19] L. Singh, R. Singh, B. Zhang, B. K. Kaushik, S. Kumar. Localized surface plasmon resonance based hetero-core optical fiber sensor structure for the detection of L-cysteine. IEEE Trans. Nanotechnol., 19, 201-208(2020).

    [20] N. Agrawal, C. Saha, C. Kumar, R. Singh, B. Zhang, S. Kumar. Development of uric acid sensor using copper oxide and silver nanoparticles immobilized SMSMS fiber structure-based probe. IEEE Trans. Instrum. Meas., 69, 9097-9104(2020).

    [21] N. Agrawal, C. Saha, C. Kumar, R. Singh, B. Zhang, R. Jha, S. Kumar. Detection of L-cysteine using silver nanoparticles and graphene oxide immobilized tapered SMS optical fiber structure. IEEE Sens. J., 20, 11372-11379(2020).

    [22] N. Sabri, S. A. Aljunid, M. S. Salim, S. Fouad. Fiber optic sensors: short review and applications. Recent Trends in Physics of Material Science and Technology, 204(2015).

    [23] H. Zhao, Y. Lee, M. Han, B. K. Sharma, X. Chen, J.-H. Ahn, J. A. Rogers. Nanofabrication approaches for functional three-dimensional architectures. Nano Today, 30, 100825(2020).

    [24] A. Biswas, I. S. Bayer, A. S. Biris, T. Wang, E. Dervishi, F. Faupel. Advances in top–down and bottom–up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci., 170, 2-27(2012).

    [25] A. Tagliacozzo, S. De Nicola, D. Montemurro, G. Campagnano, C. Petrarca, C. Forestiere, G. Rubinacci, F. Tafuri, G. P. Pepe. Use of a spoof plasmon to optimize the coupling of infrared radiation to Josephson-junction fluxon oscillations. Phys. Rev. B, 101, 014506(2020).

    [26] D. Montemurro, D. Stornaiuolo, D. Massarotti, D. Ercolani, L. Sorba, F. Beltram, F. Tafuri, S. Roddaro. Suspended InAs nanowire Josephson junctions assembled via dielectrophoresis. Nanotechnology, 26, 385302(2012).

    [27] D. Montemurro, D. Massarotti, P. Lucignano, S. Roddaro, D. Stornaiuolo, D. Ercolani, L. Sorba, A. Tagliacozzo, F. Beltram, F. Tafuri. Towards a hybrid high critical temperature superconductor junction with a semiconducting InAs nanowire barrier. J. Supercond. Nov. Magn., 28, 3429-3437(2015).

    [28] F. Carillo, G. M. De Luca, D. Montemurro, G. Papari, M. Salluzzo, D. Stornaiuolo, F. Tafuri, F. Beltram. Coherent transport in extremely underdoped Nd1.2Ba1.8Cu3Oz nanostructures. New J. Phys., 14, 083025(2012).

    [29] E. Trabaldo, S. Ruffieux, E. Andersson, R. Arpaia, D. Montemurro, J. F. Schneiderman, A. Kalaboukhov, D. Winkler, F. Lombardi, T. Bauch. Properties of grooved Dayem bridge based YBa2Cu3O7 −δ superconducting quantum interference devices and magnetometers. Appl. Phys. Lett., 116, 132601(2020).

    [30] M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo. Nanostructured plasmonic sensors. Chem. Rev., 108, 494-521(2008).

    [31] H.-M. Kim, M. Uh, D. H. Jeong, H.-Y. Lee, J.-H. Park, S.-K. Lee. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber. Sens. Actuators B Chem., 280, 183-191(2019).

    [32] C. Li, Z. Li, S. Li, Y. Zhang, B. Sun, Y. Yu, H. Ren, S. Jiang, W. Yue. LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films. Opt. Express, 28, 6071-6083(2020).

    [33] M.-C. Estevez, M. A. Otte, B. Sepulveda, L. M. Lechuga. Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal. Chim. Acta, 806, 55-73(2014).

    [34] A. A. Darweesh, S. J. Bauman, J. B. Herzog. Improved optical enhancement using double-width plasmonic gratings with nanogaps. Photon. Res., 4, 173-180(2016).

    [35] A. Dhawan, M. Canva, T. Vo-Dinh. Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt. Express, 19, 787-813(2011).

    [36] A. Leone, N. Cennamo, F. Mattiello, A. Forleo, L. Francioso, P. A. S. Jorge, S. Capone, R. Sweid, L. De Maria, P. Siciliano, M. Pesavento, C. Di Natale, L. Zeni. Numerical results on the exploitation of gold nanostructures in plastic optical fibers based plasmonic sensors. Sensors and Microsystems. Associazione Italiana Sensori e Microsistemi (AISEM) 2017, 457(2018).

    [37] F. Sohrabi, S. M. Hamidi, E. Mohammadi. Role of higher order plasmonic modes in one-dimensional nanogratings. Opt. Quantum Electron., 51, 241(2019).

    [38] S. Subramanian, K. Kumar, A. Dhawan. Palladium-coated narrow groove plasmonic nanogratings for highly sensitive hydrogen sensing. RSC Adv., 10, 4137-4147(2019).

    [39] H.-T. Yan, Q. Liu, Y. Ming, W. Luo, Y. Chen, Y.-Q. Lu. Metallic grating on a D-shaped fiber for refractive index sensing. IEEE Photon. J., 5, 4800706(2013).

    [40] M. Gao, W. Yang, Z. Wang, S. Lin, J. Zhu, Z. Yang. Plasmonic resonance-linewidth shrinkage to boost biosensing. Photon. Res., 8, 1226-1235(2020).

    [41] D. Kawasaki, H. Yamada, K. Maeno, K. Sueyoshi, H. Hisamoto, T. Endo. Core–shell-structured gold nanocone array for label-free DNA sensing. ACS Appl. Nano Mater., 2, 4983-4990(2019).

    [42] Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, J. Wang. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun., 4, 2381(2013).

    [43] B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, B. Ren. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv. Mater., 30, 1706031(2018).

    [44] M. Chamanzar, Z. Xia, S. Yegnanarayanan, A. Adibi. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Opt. Express, 21, 32086-32098(2013).

    [45] H. Im, J. N. Sutherland, J. A. Maynard, S.-H. Oh. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal. Chem., 84, 1941-1947(2012).

    [46] A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, H. Altug. Plasmonic nanohole arrays on robust hybrid substrate for highly sensitive label-free biosensing. ACS Photon., 2, 1167-1174(2015).

    [47] S. Klinghammer, T. Uhlig, F. Patrovsky, M. Böhm, J. Schütt, N. Pütz, L. Baraban, L. M. Eng, G. Cuniberti. Plasmonic biosensor based on vertical arrays of gold nanoantennas. ACS Sens., 3, 1392-1400(2018).

    [48] K. M. Byun, D. Kim, S. J. Kim. Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors. Sens. Actuators B Chem., 117, 401-407(2006).

    [49] K. Kim, D. J. Kim, S. Moon, D. Kim, K. M. Byun. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings. Nanotechnology, 20, 315501(2009).

    [50] G. D’Aguanno, N. Mattiucci, A. Alù, M. J. Bloemer. Quenched optical transmission in ultrathin subwavelength plasmonic gratings. Phys. Rev. B, 83, 035426(2011).

    [51] N. Mattiucci, G. D’Aguanno, M. J. Bloemer. Long range plasmon assisted all-optical switching at telecommunication wavelengths. Opt. Lett., 37, 121-123(2012).

    [52] T. Kume, N. Nakagawa, S. Hayashi, K. Yamamoto. Interaction between localized and propagating surface plasmons: Ag fine particles on Al surface. Solid State Commun., 93, 171-175(1995).

    [53] K. Ma, D. J. Kim, K. Kim, S. Moon, D. Kim. Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing. IEEE J. Sel. Top. Quantum Electron., 16, 1004-1014(2010).

    [54] N. Cennamo, D. Massarotti, L. Conte, L. Zeni. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors, 11, 11752-11760(2011).

    [55] J. J. Belbruno. Molecularly imprinted polymers. Chem. Rev., 119, 94-119(2019).

    [56] K. Haupt, K. Mosbach. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev., 100, 2495-2504(2000).

    [57] N. Cennamo, G. D’Agostino, C. Perri, F. Arcadio, G. Chiaretti, E. M. Parisio, G. Camarlinghi, C. Vettori, F. Di Marzo, R. Cennamo, G. Porto, L. Zeni. Proof of concept for quick and on-site highly sensitive detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers. Sensors, 21, 1681(2021).

    [58] W. Zou, H. Xie, Y. Ye, W. Ni. Tailoring optical cross sections of gold nanorods at a target plasmonic resonance wavelength using bromosalicylic acid. RSC Adv., 9, 16028-16034(2019).

    [59] L. Saa, M. Coronado-Puchau, V. Pavlov, L. M. Liz-Marzàn. Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale, 6, 7405-7409(2014).

    [60] S. Wang, X. Sun, M. Ding, G. Peng, Y. Qi, Y. Wang, J. Ren. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array. J. Phys. D, 51, 045101(2018).

    [61] A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, S. Collin. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett., 11, 3557-3563(2011).

    [62] M. Cui, Y. Xin, R. Song, Q. Sun, X. Wang, D. Lu. Fluorescence sensor for bovine serum albumin detection based on the aggregation and release of CdS QDs within CMC. Cellulose, 27, 1621-1633(2020).

    [63] X. J. Xu, J. Huang, J. J. Li, J. W. Yan, J. G. Qin, Z. Li. A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin. Chem. Commun., 47, 12385-12387(2011).

    [64] S. Kaushik, U. K. Tiwari, A. Deep, R. K. Sinha. Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. Sci. Rep., 9, 6987(2019).

    [65] K. Jia, M. Y. Khaywah, Y. Li, J. L. Bijeon, P. M. Adam, R. Déturche, B. Guelorget, M. François, G. Louarn, R. E. Ionescu. Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films. ACS Appl. Mater. Interfaces, 6, 219-227(2014).

    CLP Journals

    [1] Ruoqin Yan, Tao Wang, Xinzhao Yue, Huimin Wang, Yu-Hui Zhang, Peng Xu, Lu Wang, Yuandong Wang, Jinyan Zhang. Highly sensitive plasmonic nanorod hyperbolic metamaterial biosensor[J]. Photonics Research, 2022, 10(1): 84

    Francesco Arcadio, Luigi Zeni, Domenico Montemurro, Caterina Eramo, Stefania Di Ronza, Chiara Perri, Girolamo D’Agostino, Guido Chiaretti, Giovanni Porto, Nunzio Cennamo. Biochemical sensing exploiting plasmonic sensors based on gold nanogratings and polymer optical fibers[J]. Photonics Research, 2021, 9(7): 1397
    Download Citation