• Acta Photonica Sinica
  • Vol. 51, Issue 4, 0404002 (2022)
Guoping LUO*, Xingyuan CHEN, Sumei HU, and Weiling ZHU
Author Affiliations
  • School of Science,Guangdong University of Petrochemical Technology,Maoming,Guangdong 525000,China
  • show less
    DOI: 10.3788/gzxb20225104.0404002 Cite this Article
    Guoping LUO, Xingyuan CHEN, Sumei HU, Weiling ZHU. Near Infrared Hot Electrons Photodetectors Based on Tamm Plasmons[J]. Acta Photonica Sinica, 2022, 51(4): 0404002 Copy Citation Text show less
    References

    [1] Linlin SHI, Keqiang CHEN, Aiping ZHAI et al. Status and outlook of metal–inorganic semiconductor–metal photodetectors. Laser & Photonics Reviews, 15, 2000401(2021).

    [2] Weida HU, Qing LI, Xiaoshuang CHEN et al. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 68, 120701(2019).

    [3] Peng WANG, Hui XIA, Qing LI et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small, 15, 1904396(2019).

    [4] Yan LIU, Tian SUN, Weiliang MA et al. Highly responsive broadband black phosphorus photodetectors. Chinese Optics Letters, 16, 020002(2018).

    [5] Guobin FENG, Jianmin ZHANG, Pengling YANG et al. Responsivity variation with temperature of uncooled mid-infrared HgCdTe photoconductive detector. Acta Photonica Sinica, 42, 787-791(2013).

    [6] M L BRONGERSMA, N J HALAS, P NORDLANDER. Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 10, 25-34(2015).

    [7] G TAGLIABUE, J S DUCHENE, M ABDELLAH et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nature Materials, 19, 1312-1318(2020).

    [8] Yanfeng LAO, A G U PERERA, L H LI et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nature Photonics, 8, 412-418(2014).

    [9] Y HOU, H LIANG, A TANG et al. Hot-electron photocurrent detection of near-infrared light based on ZnO. Applied Physics Letters, 118, 063501(2021).

    [10] Hongbin XIAO, LO Shucheng, Yihsin TAI et al. Spectrally selective photodetection in the near-infrared with a gold grating-based hot electron structure. Applied Physics Letters, 116, 161103(2020).

    [11] A SOBHANI, M W KNIGHT, Yumin WANG et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Communications, 4, 1643(2013).

    [12] Wenyue LIANG, Zheng XIAO, Haitao XU et al. Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons. Optics Express, 28, 31330-31344(2020).

    [13] Zhiyu WANG, J K CLARK, Y L HO et al. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon. Nanoscale, 11, 17407-17414(2019).

    [14] Weijia SHAO, Qianru YANG, Cheng ZHANG et al. Planar dual-cavity hot-electron photodetectors. Nanoscale, 11, 1396-1402(2019).

    [15] Tong YU, Cheng ZHANG, Huimin LIU et al. Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons. Nanoscale, 11, 23182-23187(2019).

    [16] Cheng ZHANG, Kai WU, V GIANNINI et al. Planar hot-electron photodetection with tamm plasmons. ACS Nano, 11, 1719-1727(2017).

    [17] Haibin TANG, Chihjung CHEN, Zhulin HUANG et al. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: a perspective. The Journal of Chemical Physics, 152, 220901(2020).

    [18] Liang CHEN, Sui MAO, Pu WANG et al. Visible light driven hot‐electron injection by pd nanoparticles: fast response in metal–semiconductor photodetection. Advanced Optical Materials, 9, 2001505(2021).

    [19] C CLAVERO. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 8, 95-103(2014).

    [20] Kai WANG, Haifeng HU, Shan LU et al. Visible and near-infrared dual-band photodetector based on gold–silicon metamaterial. Applied Physics Letters, 116, 203107(2020).

    [21] Yusheng ZHAI, Yupei LI, Jitao JI et al. Hot electron generation in silicon micropyramids covered with nanometer-thick gold films for near-infrared photodetectors. ACS Applied Nano Materials, 3, 149-155(2020).

    [22] Jiaying WANG, Yisong ZHU, Wenhao WANG et al. Broadband Tamm plasmon-enhanced planar hot-electron photodetector. Nanoscale, 12, 23945-23952(2020).

    [23] M SAKHDARI, M HAJIZADEGAN, M FARHATet. Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials. Nano Energy, 26, 371-381(2016).

    [24] S L SHINDE, S ISHII, T NAGAO. Sub-bandgap photodetection from titanium nitride/germanium heterostructure. ACS Applied Materials & Interfaces, 11, 21965-21972(2019).

    [25] Qilong WANG, Yupei LI, Yusheng ZHAI et al. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction. Infrared and Laser Engineering, 48, 0203002(2019).

    [26] Kengte LIN, Hsuenli CHEN, Yusheng LAI et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nature Communications, 5, 3288(2014).

    [27] Hongyu CHEN, Hui LIU, Zhiming ZHANG et al. Nanostructured photodetectors: from ultraviolet to terahertz. Advanced Materials, 28, 403-433(2016).

    [28] A KHARITONOV, S KHARINTSEV. Tunable optical materials for multi-resonant plasmonics: from TiN to TiON. Optical Materials Express, 10, 513-531(2019).

    [29] A NALDONI, U GULER, Zhuoxian WANG et al. Broadband hot‐electron collection for solar water splitting with plasmonic titanium nitride. Advanced Optical Materials, 5, 1601031(2017).

    [30] Tao GONG, J N MUNDAY. Materials for hot carrier plasmonics. Optical Materials Express, 5, 2501-2512(2015).

    [31] S ISHII, S L SHINDE, W JEVASUWAN et al. Hot electron excitation from titanium nitride using visible light. ACS Photonics, 3, 1552-1557(2016).

    [32] S PODDER, A R PAL. Plasmonic visible-NIR photodetector based on hot electrons extracted from nanostructured titanium nitride. Journal of Applied Physics, 126, 083108(2019).

    [33] Shenyou ZHAO, Yanting YIN, Jun PENG et al. The importance of schottky barrier height in plasmonically enhanced hot‐electron devices. Advanced Optical Materials, 9, 2001121(2021).

    [34] Cheng ZHANG, Kai WU, Yaohui ZHAN et al. Planar microcavity-integrated hot-electron photodetector. Nanoscale, 8, 10323-10329(2016).

    [35] C NG, J J CADUSCH, S DLIGATCH et al. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano, 10, 4704-4711(2016).

    [36] Zhiguang SUN, Yurui FANG. Hot-carrier generation from propagating plasmon in an antenna-spacer-mirror nanostructure. Optics Letters, 45, 4357-4360(2020).

    [37] C C KATSIDIS, D I SIAPKAS. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 41, 3978-3987(2002).

    [38] D A KOVACS, J WINTER, S MEYER et al. Photo and particle induced transport of excited carriers in thin film tunnel junctions. Physical Review B, 76, 235408(2007).

    [39] T P WHITE, K R CATCHPOLE. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Applied Physics Letters, 101, 073905(2012).

    [40] S O KASAP. Optoelectronics and photonics principles and practices, 56-58(2012).

    [41] A CIESIELSKI, L SKOWRONSKI, W PACUSKI et al. Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver. Materials Science in Semiconductor Processing, 81, 64-67(2018).

    [42] Chunchieh CHANG, Tingyun CHEN, Tingwei LIN et al. Flexible and ultranarrow transmissive color filters by simultaneous excitations of triple resonant eigenmodes in hybrid metallic–optical tamm state Devices. ACS Photonics, 8, 540-549(2021).

    [43] S M A MIRZAEE, O LEBEL, J M NUNZI. Simple unbiased hot-electron polarization-sensitive near-infrared photodetector. ACS Applied Materials & Interfaces, 10, 11862-11871(2018).

    [44] C LEE, Y K LEE, Y PARK et al. Polarization effect of hot electrons in tandem-structured plasmonic nanodiode. ACS Photonics, 5, 3499-3506(2018).

    Guoping LUO, Xingyuan CHEN, Sumei HU, Weiling ZHU. Near Infrared Hot Electrons Photodetectors Based on Tamm Plasmons[J]. Acta Photonica Sinica, 2022, 51(4): 0404002
    Download Citation