• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 2, 367 (2024)
YANG Hui, LI Zhiqiang*, PAN Wenjie, YANG Donghan, and WU Xi
Author Affiliations
  • College of Information Engineering, Yangzhou University, Yangzhou 225009, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.02.019 Cite this Article
    Hui YANG, Zhiqiang LI, Wenjie PAN, Donghan YANG, Xi WU. Application of quantum approximate optimization algorithm in number partition problem[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 367 Copy Citation Text show less
    References

    [1] Benioff P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines[J]. Journal of Statistical Physics, 22, 563-591(1980).

    [2] Feynman R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 21, 467-488(1982).

    [3] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 400, 97-117(1985).

    [4] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 439, 553-558(1992).

    [5] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[C], 124-134(1994).

    [6] Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 79, 325-328(1997).

    [7] Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm[OL](2014). https://arxiv.org/abs/1411.4028.pdf

    [8] Herrman R, Treffert L, Ostrowski J et al. Impact of graph structures for QAOA on MaxCut[J]. Quantum Information Processing, 20(2021).

    [9] Brandao F G S L, Broughton M, Farhi E et al. For fixed control parameters the quantum approximate optimization algorithm's objective function value concentrates for typical instances[OL](2018). https://arxiv.org/abs/1812.04170.pdf

    [10] Herrman R, Ostrowski J, Humble T S et al. Lower bounds on circuit depth of the quantum approximate optimization algorithm[J]. Quantum Information Processing, 20, 1-17(2021).

    [11] Verdon G, Pye J, Broughton M. A universal training algorithm for quantum deep learning[OL](2018). https://arxiv.org/abs/1806.09729.pdf

    [12] Wu Y F, Ji R P, Wang Y B et al. Application of quantum approximate optimization algorithm in China's stock market[J]. The Chinese Banker, 120-122(2021).

    [13] Zhang Y J, Mu X D, Liu X W et al. Application of quantum approximate optimization algorithm to mission planning of command and control organization[J]. Acta Physica Sinica, 70, 230304(2021).

    [14] Hayes B. The easiest hard problem[J]. American Scientist, 90, 113(2002).

    [15] Merkle R, Hellman M. Hiding information and signatures in trapdoor knapsacks[J]. IEEE Transactions on Information Theory, 24, 525-530(1978).

    [16] Miller R E, Thatcher J W, Bohlinger J D[M]. Complexity of Computer Computations(1972).

    [17] Johnson D S. The NP-completeness column: An ongoing guide[J]. Journal of Algorithms, 7, 584-601(1986).

    Hui YANG, Zhiqiang LI, Wenjie PAN, Donghan YANG, Xi WU. Application of quantum approximate optimization algorithm in number partition problem[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 367
    Download Citation