• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 2, 367 (2024)
YANG Hui, LI Zhiqiang*, PAN Wenjie, YANG Donghan, and WU Xi
Author Affiliations
  • College of Information Engineering, Yangzhou University, Yangzhou 225009, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.02.019 Cite this Article
    Hui YANG, Zhiqiang LI, Wenjie PAN, Donghan YANG, Xi WU. Application of quantum approximate optimization algorithm in number partition problem[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 367 Copy Citation Text show less
    Algorithmic flow chart of QAOA
    Fig. 1. Algorithmic flow chart of QAOA
    Quantum line diagram of U(HC,γ)
    Fig. 2. Quantum line diagram of U(HC,γ)
    Quantum line diagram of U(HB,β)
    Fig. 3. Quantum line diagram of U(HB,β)
    Overall circuit diagram of three qubits
    Fig. 4. Overall circuit diagram of three qubits
    n qubits quantum circuit diagram
    Fig. 5. n qubits quantum circuit diagram
    The measured output with p=1
    Fig. 6. The measured output with p=1
    The measured output with p=2
    Fig. 7. The measured output with p=2
    The measured output with p=3
    Fig. 8. The measured output with p=3
    The measured output for the {1,2,3,4,5}
    Fig. 9. The measured output for the {1,2,3,4,5}
    Curve of success probability with circuit depth
    Fig. 10. Curve of success probability with circuit depth
    Curve of consumption time with circuit depth
    Fig. 11. Curve of consumption time with circuit depth
    算法 参数优化

    输入: 电路深度q

    输出: 最佳参数γ*,β*, 最大期望值Fp(γ*,β*)

    1: forq=1pdo // 电路深度p

    2:  fork=1ndo // 试验次数n

    3:   γqrand(0,2π)

    4:   βqrand(0,π)

    5:   ifq=1then

    6:    γ, β(γ1, β1)

    7:   else

    8:    γ, βγ1*,,γq-1*, γq, β1*,,βq-1*, βq // 插入新的参数(γq, βq)

    9:   end if

    10:  使用γ, β初始化电路参数并用优化器优化找到最大期望值Fq(γ*, β*)k ;

    11: end for

    12: Fq(γ*, β*)maxkFq(γ*, β*)k

    13: (γ*, β*)argmaxkFq(γ*, β*)k // γ*, β*γ1*,,γq*, β1*,,βq*

    14: end for

    Table 0. [in Chinese]
    pprobability of success
    10.418
    20.470
    30.669
    40.677
    50.686
    60.724
    70.730
    80.760
    90.992
    100.997
    Table 1. The probability change with p
    qubitsnumberProbability%time/sgates
    4443.20.8126
    5545.21.2840
    6641.21.5657
    7739.61.8377
    8838.42.9100
    9936.63.32126
    101035.25.03155
    111133.45.56187
    121232.211.23222
    131322.614.61260
    Table 2. Experimental results with the number increase of figures
    Hui YANG, Zhiqiang LI, Wenjie PAN, Donghan YANG, Xi WU. Application of quantum approximate optimization algorithm in number partition problem[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 367
    Download Citation