• Journal of Inorganic Materials
  • Vol. 36, Issue 10, 1053 (2021)
Qiang LIU, Jie DING*, Guojing JI, Juanmin HU, Hao GU, and Qin ZHONG*
Author Affiliations
  • School Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.15541/jim20210044 Cite this Article
    Qiang LIU, Jie DING, Guojing JI, Juanmin HU, Hao GU, Qin ZHONG. Fe-Co-K/ZrO2 Catalytic Performance of CO2 Hydrogenation to Light Olefins [J]. Journal of Inorganic Materials, 2021, 36(10): 1053 Copy Citation Text show less

    Abstract

    In recent years, with the consumption of fossil resources and the large amount of CO2 emissions, the energy crisis and the greenhouse question become deeply serious. The direct synthesis of olefins by CO2 hydrogenation with iron-based catalysts is one of the best ways to achieve CO2 reduction. In this study, zirconia (ZrO2)-supported iron-cobalt catalyst (Fe-Co/ZrO2) and ZrO2-supported iron-cobalt-potassium catalyst (Fe-Co-K/ZrO2) were prepared by impregnation method, which were used for CO2 hydrogenation to light olefins (C2=-C4=), and the effect of K on the catalytic activity were investigated emphatically. At the condition of 300 ℃ and 1.5 MPa, the activity test show that addition of K increases the CO2 conversion from 40.8% to 44.8%, improves the selectivity of light olefins from 0.23% to 68.5%, and raises the stability of catalytic performance. The characterization results show that introduction of K improves electron cloud density of the iron species, enhances adsorption strength of the Fe to CO2, promotes the formation of iron carbide, and facilitates direct dissociation of CO2 after adsorption on Fe species, thus boosts the performance of CO2 hydrogenation to light olefins.
    Qiang LIU, Jie DING, Guojing JI, Juanmin HU, Hao GU, Qin ZHONG. Fe-Co-K/ZrO2 Catalytic Performance of CO2 Hydrogenation to Light Olefins [J]. Journal of Inorganic Materials, 2021, 36(10): 1053
    Download Citation