• Journal of Inorganic Materials
  • Vol. 36, Issue 10, 1053 (2021)
Qiang LIU, Jie DING*, Guojing JI, Juanmin HU, Hao GU, and Qin ZHONG*
Author Affiliations
  • School Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.15541/jim20210044 Cite this Article
    Qiang LIU, Jie DING, Guojing JI, Juanmin HU, Hao GU, Qin ZHONG. Fe-Co-K/ZrO2 Catalytic Performance of CO2 Hydrogenation to Light Olefins [J]. Journal of Inorganic Materials, 2021, 36(10): 1053 Copy Citation Text show less
    References

    [1] Q CHEN S, X LÜ G. CO2 methanation over Ru/TiO2 catalysts under UV irradiation and heating. Journal of Inorganic Materials, 29, 1287-1293(2014).

    [2] F JIAO, J LI J, L PAN X et al. Selective conversion of syngas to light olefins. Science, 351, 1065-1068(2016).

    [3] H TORRES G, H BITTER J, B KHARE C et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 335, 835-838(2012).

    [4] M AMOYAL, R VIDRUK N, V LANDAU M et al. Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation. Journal of Catalysis, 348, 29-39(2017).

    [5] H LI W, F ZHANG A, X JIANG et al. The anti-sintering catalysts: Fe-Co-Zr polymetallic fibers for CO2 hydrogenation to C2=-C4=- rich hydrocarbons. Journal of CO2 Utilization, 23, 219-225(2018).

    [6] R SATTHAWONG, N KOIZUMI, S SONG C et al. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons. Journal of CO2 Utilization, 34, 102-106(2013).

    [7] T NUMPILAI, N CHANLEK, Y POO A et al. Tuning interactions of surface-adsorbed species over Fe-Co/K-Al2O3 catalyst by different K contents: selective CO2 hydrogenation to light olefins. ChemCatChem, 12, 3306-3320(2020).

    [8] J DING, L HUANG, B GONG W et al. CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63. Journal of Catalysis, 377, 224-232(2019).

    [9] D SHAFER W, G JACOBS, M GRAHAM U et al. Increased CO2 hydrogenation to liquid products using promoted iron catalysts. Journal of Catalysis, 369, 239-248(2019).

    [10] T NUMPILAI, T WITOON, N CHANLEK et al. Structure-activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins. Applied Catalysis A: General, 547, 219-229(2017).

    [11] X LI, J LIN, L LI et al. Controlling CO2 hydrogenation selectivity by metal-supported electron transfer. Angew. Chem. Int. Ed., 59, 199-199(2020).

    [12] G BRODEN, P BONZEL H. Potassium adsorption on Fe(110). Surface Science, 84, 106-120(1979).

    [13] B YAN, Y WU Q, J CEN J et al. Highly active subnanometer Rh clusters derived from Rh-doped SrTiO3 for CO2 reduction. Applied Catalysis B: Environmental, 237, 1003-1011(2018).

    [14] P SHAO C, S CHEN MIn situ. FT-IR study on CO2 hydrogenation over SiO2-supported PtM (M=Cr, Mo, W) complex catalysts. Journal of Molecular Catalysis A: Chemical, 170, 245-249(2001).

    [15] C WU H, C CHEN T, H WU J et al. Influence of sodium- modified Ni/SiO2 catalysts on the tunable selectivity of CO2 hydrogenation: effect of the CH4 selectivity, reaction pathway and mechanism on the catalytic reaction. J. Colloid Interface Sci., 586, 514-527(2021).

    [16] S XU S, S CHANSAI, J XU S et al. CO poisoning of Ru catalysts in CO2 hydrogenation under thermal and plasma conditions: a combined kinetic and diffuse reflectance infrared fourier transform spectroscopy-mass spectrometry study. ACS Catalysis, 10, 128-1284(2020).

    [17] G ZHAO F, L FAN L, J XU K et al. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol. Journal of CO2Utilization, 33, 222-232(2019).

    [18] K NOIROJ, P INTARAPONG, A LUENGNARUEMITCHAI et al. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy, 34, 1145-1150(2009).

    [19] L HUYNH H, J ZHU, H ZHANG G et al. Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. Journal of Catalysis, 392, 266-277(2020).

    [20] F WANG, S HE, H CHEN et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc., 138, 6298-6305(2016).

    [21] J HAN S, M HWANG S, G PARK H et al. Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling. Journal of Materials Chemistry A, 8, 130-130(2020).

    [22] L LIU X, X CAO C, F TIAN P et al. Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation. Journal of CO2 Utilization, 38, 10-15(2020).

    [23] H GU, J DING, Q ZHONG et al. Promotion of surface oxygen vacancies on the light olefins synthesis from catalytic CO2 hydrogenation over Fe-K/ZrO2 catalysts. International Journal of Hydrogen Energy, 44, 118-118(2019).

    [24] M YANG X, Y WEI, L SU Y et al. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR. Fuel Processing Technology, 91, 1168-1173(2010).

    [25] C YANG, H ZHAO, Y HOU et al. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer- Tropsch synthesis. J. Am. Chem. Soc., 134, 1581-158(2012).

    [26] Z WANG H, W NIE X, G CHEN Y et al. Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: insight from DFT. Journal of CO2Utilization, 26, 160-170(2018).

    Qiang LIU, Jie DING, Guojing JI, Juanmin HU, Hao GU, Qin ZHONG. Fe-Co-K/ZrO2 Catalytic Performance of CO2 Hydrogenation to Light Olefins [J]. Journal of Inorganic Materials, 2021, 36(10): 1053
    Download Citation