• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823002 (2021)
Runqiu He, Guohua Liang, Hui Liu*, and Shining Zhu
Author Affiliations
  • School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
  • show less
    DOI: 10.3788/AOS202141.0823002 Cite this Article Set citation alerts
    Runqiu He, Guohua Liang, Hui Liu, Shining Zhu. Optical Control and Applications on Curved Waveguides[J]. Acta Optica Sinica, 2021, 41(8): 0823002 Copy Citation Text show less
    References

    [1] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [2] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [3] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 101, 203901(2008). http://www.ncbi.nlm.nih.gov/pubmed/19113341

    [4] Lai Y, Ng J, Chen H et al. Illusion optics: the optical transformation of an object into another object[J]. Physical Review Letters, 102, 253902(2009). http://europepmc.org/abstract/MED/19659076

    [5] Chen H Y, Chan C T, Sheng P. Transformation optics and metamaterials[J]. Nature Materials, 9, 387-396(2010).

    [6] Cheng Q, Cui T J, Jiang W X et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 12, 063006(2010).

    [7] McCall M W, Favaro A, Kinsler P et al. A spacetime cloak, or a history editor[J]. Journal of Optics, 13, 024003(2011). http://www.ingentaconnect.com/content/iop/jopt2/2011/00000013/00000002/art024003

    [8] Chen H, Zheng B, Shen L et al. Ray-optics cloaking devices for large objects in incoherent natural light[J]. Nature Communications, 4, 2652(2013). http://europepmc.org/abstract/med/24153410

    [9] Mitchell-Thomas R C, McManus T M, Quevedo-Teruel O et al. Perfect surface wave cloaks[J]. Physical Review Letters, 111, 213901(2013).

    [10] Han T, Bai X, Gao D et al. Experimental demonstration of a bilayer thermal cloak[J]. Physical Review Letters, 112, 054302(2014). http://europepmc.org/abstract/med/24580600

    [11] Smolyaninov I I, Narimanov E E. Metric signature transitions in optical metamaterials[J]. Physical Review Letters, 105, 067402(2010).

    [12] Smolyaninov I I, Hwang E, Narimanov E. Hyperbolic metamaterial interfaces: hawking radiation from Rindler horizons and spacetime signature transitions[J]. Physical Review B, 85, 235122(2012).

    [13] Zhukovsky S V, Ozel T, Mutlugun E et al. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites[J]. Optics Express, 22, 18290-18298(2014).

    [14] Smolyaninov I I, Hung Y J, Hwang E. Experimental modeling of cosmological inflation with metamaterials[J]. Physics Letters A, 376, 2575-2579(2012).

    [15] Greenleaf A, Kurylev Y, Lassas M et al. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials[J]. Physical Review Letters, 99, 183901(2007).

    [16] Li M, Miao R X, Pang Y. More studies on metamaterials mimicking de Sitter space[J]. Optics Express, 18, 9026-9033(2010).

    [17] Li M, Miao R X, Pang Y. Casimir energy, holographic dark energy and electromagnetic metamaterial mimicking de Sitter[J]. Physics Letters B, 689, 55-59(2010).

    [18] Hu J W, Yu H W. Manipulating lightcone fluctuations in an analogue cosmic string[J]. Physics Letters B, 777, 346-350(2018).

    [19] Sheng C, Liu H, Wang Y et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 7, 902-906(2013).

    [20] Sheng C, Bekenstein R, Liu H et al. Wavefront shaping through emulated curved space in waveguide settings[J]. Nature Communications, 7, 10747(2016).

    [21] Sheng C, Liu H, Chen H et al. Definite photon deflections of topological defects in metasurfaces and symmetry-breaking phase transitions with material loss[J]. Nature Communications, 9, 4271(2018).

    [22] Zhong F, Li J, Liu H et al. Controlling surface plasmons through covariant transformation of the spin-dependent geometric phase between curved metamaterials[J]. Physical Review Letters, 120, 243901(2018).

    [24] Batz S, Peschel U. Linear and nonlinear optics in curved space[J]. Physical Review A, 78, 043821(2008).

    [25] Schultheiss V H, Batz S, Szameit A et al. Optics in curved space[J]. Physical Review Letters, 105, 143901(2010).

    [26] Schultheiss V H, Batz S, Peschel U. Hanbury Brown and Twiss measurements in curved space[J]. Nature Photonics, 10, 106-110(2016).

    [27] Bekenstein R, Kabessa Y, Sharabi Y et al. Control of light by curved space in nanophotonic structures[J]. Nature Photonics, 11, 664-670(2017).

    [28] Zhu J, Liu Y, Liang Z et al. Elastic waves in curved space: mimicking a wormhole[J]. Physical Review Letters, 121, 234301(2018).

    [29] Xu L, Wang X Y, Tyc T et al. Light rays and waves on geodesic lenses[J]. Photonics Research, 7, 1266-1272(2019).

    [30] Xu L, He R Q, Yao K et al. Conformal singularities and topological defects from inverse transformation optics[J]. Physical Review Applied, 11, 034072(2019).

    [31] Xu L, Ge H, Li J et al. Conformal landscape of a two-dimensional gradient refractive-index profile for geometrical optics[J]. Physical Review Applied, 13, 054007(2020).

    [32] He R Q, Liang G H, Zhu S N et al. Simulation of giant tidal force of wormhole using curved optical spaces[J]. Physical Review Research, 2, 013237(2020).

    [33] Liang G H, Cai R G, Ma Y Z et al. Mimicking an expanding universe by optical interference in a helicoid waveguide[J]. Optics Express, 28, 11406-11414(2020).

    Runqiu He, Guohua Liang, Hui Liu, Shining Zhu. Optical Control and Applications on Curved Waveguides[J]. Acta Optica Sinica, 2021, 41(8): 0823002
    Download Citation