• Acta Optica Sinica
  • Vol. 40, Issue 9, 0934001 (2020)
Naxi Tian1、2、3, Hui Jiang1、3、*, Aiguo Li1、3、**, Dongxu Liang1、3, and Shuai Yan1、3
Author Affiliations
  • 1Shanghai Institute of Apply Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Department of Advanced Imaging and Industrial Application Research, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
  • show less
    DOI: 10.3788/AOS202040.0934001 Cite this Article Set citation alerts
    Naxi Tian, Hui Jiang, Aiguo Li, Dongxu Liang, Shuai Yan. Study on Phase Compensation Mirror Used for Hard X-Ray Synchrotron Radiation[J]. Acta Optica Sinica, 2020, 40(9): 0934001 Copy Citation Text show less
    References

    [1] Pfeiffer F, Bech M, Bunk O et al. Hard-X-ray dark-field imaging using a grating interferometer[J]. Nature Materials, 7, 134-137(2008).

    [2] Moukhametzianov R, Burghammer M, Edwards P C et al. Protein crystallography with a micrometre-sized synchrotron-radiation beam[J]. Acta Crystallographica Section D Biological Crystallography, 64, 158-166(2008).

    [3] Zheng M Z, Cai C, Hu Y et al. Spatial distribution of arsenic and temporal variation of its concentration in rice[J]. New Phytologist, 189, 200-209(2011).

    [4] Matsuyama S, Shimura M, Mimura H et al. Trace element mapping of a single cell using a hard X-ray nanobeam focused by a Kirkpatrick-Baez mirror system[J]. X-Ray Spectrometry, 38, 89-94(2009).

    [5] Ice G E, Budai J D. Pang J W L. The race to X-ray microbeam and nanobeam science[J]. Science, 334, 1234-1239(2011).

    [6] Mimura H, Matsuyama S, Yumoto H et al. Hard X-ray diffraction-limited nanofocusing with Kirkpatrick-Baez mirrors[J]. Japanese Journal of Applied Physics, 44, 539-542(2005).

    [7] Keskinbora K, Robisch A L, Mayer M et al. Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV[J]. Optics Express, 22, 18440-18453(2014).

    [8] Huang Q S, Li H C, Song Z Q et al. Hard X-ray one dimensional nano-focusing at the SSRF using a WSi2/Si multilayer Laue lens[J]. Chinese Physics C, 37, 028002(2013).

    [9] Snigirev A, Kohn V, Snigireva I et al. A compound refractive lens for focusing high-energy X-rays[J]. Nature, 384, 49-51(1996).

    [10] Huang X J, Xu W H, Nazaretski E et al. Hard X-ray scanning imaging achieved with bonded multilayer Laue lenses[J]. Optics Express, 25, 8698-8704(2017).

    [11] Murray K T, Pedersen A F, Mohacsi I et al. Multilayer Laue lenses at high X-ray energies: performance and applications[J]. Optics Express, 27, 7120-7138(2019).

    [12] Mimura H, Handa S, Kimura T et al. Breaking the 10 nm barrier in hard-X-ray focusing[J]. Nature Physics, 6, 122-125(2010).

    [13] Li A G, Jiang H, Wang H et al[J]. Current status of the hard X-ray nanoprobe beamline at the SSRF SPIE, 103890, 103890J.

    [14] Yamauchi K, Mimura H, Inagaki K et al. Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining[J]. Review of Scientific Instruments, 73, 4028-4033(2002).

    [15] Hubert P, Tania A, Tarik A et al[J]. Developments of piezo deformable mirrors SPIE, 9909, 99097Z.

    [16] Yan W, Chen Z H, Du T J et al. Numerical simulation of correction thermal blooming based on deformable mirror eigen mode[J]. Acta Optica Sinica, 34, 1101001(2014).

    [17] Susini J, Labergerie D, Zhang L. Compact active/adaptive X-ray mirror: bimorph piezoelectric flexible mirror[J]. Review of Scientific Instruments, 66, 2229-2231(1995).

    [18] Vannoni M, Freijo Martín I, Siewert F et al. Characterization of a piezo bendable X-ray mirror[J]. Journal of Synchrotron Radiation, 23, 169-175(2016).

    [19] Huang L, Xue J P, Idir M. Controlling X-ray deformable mirrors during inspection[J]. Journal of Synchrotron Radiation, 23, 1348-1356(2016).

    [20] Jiang H, Tian N X, Liang D X et al. A piezoelectric deformable X-ray mirror for phase compensation based on global optimization[J]. Journal of Synchrotron Radiation, 26, 729-736(2019).

    [21] Sutter J, Alcock S, Sawhney K. In situ beamline analysis and correction of active optics[J]. Journal of Synchrotron Radiation, 19, 960-968(2012).

    [22] Berujon S, Ziegler E. Grating-based at-wavelength metrology of hard X-ray reflective optics[J]. Optics Letters, 37, 4464-4466(2012).

    [23] Berujon S, Wang H C, Alcock S et al. At-wavelength metrology of hard X-ray mirror using near field speckle[J]. Optics Express, 22, 6438-6446(2014).

    [24] Jiang H, Yan S, Tian N X et al. Extraction of medium-spatial-frequency interfacial waviness and inner structure from X-ray multilayers using the speckle scanning technique[J]. Optical Materials Express, 9, 2878-2891(2019).

    [25] Wang H C, Sutter J, Sawhney K. Advanced in situ metrology for X-ray beam shaping with super precision[J]. Optics Express, 23, 1605-1614(2015).

    [26] Tang H C, Li D H, Li L et al. Planar object surface shape speckle pattern deflectometry based on digital image correlation[J]. Acta Optica Sinica, 39, 0212006(2019).

    [27] Cerbino R, Peverini L. Potenza M A C, et al. X-ray-scattering information obtained from near-field speckle[J]. Nature Physics, 4, 238-243(2008).

    [28] Tian N X, Jiang H, Li A G et al. Influence of diffuser grain size on the speckle tracking technique[J]. Journal of Synchrotron Radiation, 27, 146-157(2020).

    Naxi Tian, Hui Jiang, Aiguo Li, Dongxu Liang, Shuai Yan. Study on Phase Compensation Mirror Used for Hard X-Ray Synchrotron Radiation[J]. Acta Optica Sinica, 2020, 40(9): 0934001
    Download Citation