[1] Chen Hongfu, Luo Man, Shen Niming, et al. Research progress of two-dimensional layered materials-based heterojunction photodetectors(Invited)[J]. Infrared and Laser Engineering, 50, 20211018(2021).
[2] Zhang Jinyue, Lv Junpeng, Ni Zhenhua. Highly sensitive infrared detector based on a two-dimensional heterojunction[J]. Chinese Optics, 14, 87-99(2021).
[3] Yang Qi, Shen Jun, Wei Xingzhan, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 49, 0103003(2020).
[4] Wang J, Han J, Chen X, et al. Design strategies for two‐dimensional material photodetectors to enhance device performance[J]. InfoMat, 1, 33-53(2019).
[5] Xu Hangyu, Wang Peng, Chen Xiaoshuang, et al. Research progress of two-dimensional semiconductor infrared photodetector(Invited)[J]. Infrared and Laser Engineering, 50, 20211017(2021).
[6] Wang J, Fang H, Wang X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Small, 13, 1700894(2017).
[7] Ren Sheng, Liu Liwei, Li Jinhua, et al. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 11, 31-46(2018).
[8] Han J, Wang J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions[J]. Chinese Physics B, 28, 17103(2019).
[9] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 7, 363-368(2012).
[10] Lee Y, Kwon J, Hwang E, et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 27, 41-46(2015).
[11] Yu M, Chen Y, Chen Y G, et al. Synergy between fermi level of graphene and morphology of polymer film allows broadband or wavelength‐sensitive photodetection[J]. Advanced Materials Interfaces, 8, 2100770(2021).
[12] Yu W, Li S, Zhang Y, et al. Near-infrared photodetectors based on MoTe2 /graphene heterostructure with high responsivity and flexibility[J]. Small, 13, 1700268(2017).
[13] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2, 579(2011).
[14] Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 11, 9854-9862(2017).
[15] Chen X, Liu X, Wu B, et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer[J]. Nano Letters, 17, 6391-6396(2017).
[16] Zhou G, Sun R, Xiao Y, et al. A high‐performance flexible broadband photodetector based on graphene–PTAA–perovskite Heterojunctions[J]. Advanced Electronic Materials, 7, 2000522(2021).
[17] Han J, Wang J, Yang M, et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse[J]. Advanced Materials, 30, 1804020(2018).
[18] He M, Han J, Han X, et al. Organic thin film thickness-dependent photocurrents polarity in graphene heterojunction phototransistor[J]. Carbon, 178, 506-514(2021).
[19] Han J, Han X, Zhang C, et al. Deciphering the photocurrent polarity of Bi2 O2 Se heterojunction phototransistors to enhance detection performance[J]. Journal of Materials Chemistry C, 9, 7910-7918(2021).
[20] Han J, Zhang C, Peng S, et al. Type-III organic/two-dimensional multi-layered phototransistors with promoted operation speed at the communication band[J]. Journal of Materials Chemistry C, 9, 13963-13971(2021).
[21] He Z, Han J, Du X, et al. Photomemory and pulse monitoring featured solution‐processed near‐infrared graphene/organic phototransistor with detectivity of 2.4×1013 Jones[J]. Advanced Functional Materials, 31, 2103988(2021).
[22] Hou Y, Li Y, Zhang Z, et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing[J]. ACS Nano, 15, 1497-1508(2021).
[23] Han J, He M, Yang M, et al. Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents[J]. Light: Science & Applications, 9, 167(2020).