• Laser & Optoelectronics Progress
  • Vol. 56, Issue 6, 060004 (2019)
Liang Ding1、2、*, Zhiyong Wu1, Yucong Gu1、2, Zechao Gao1、2, Jintian Hu1、2, and Shuang Ma1
Author Affiliations
  • 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP56.060004 Cite this Article Set citation alerts
    Liang Ding, Zhiyong Wu, Yucong Gu, Zechao Gao, Jintian Hu, Shuang Ma. Key Technologies of Wireless Laser and Radio Frequency Complementary Communication System[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060004 Copy Citation Text show less
    References

    [1] Bojic D, Sasaki E, Cvijetic N et al. Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management[J]. IEEE Communications Magazine, 51, 86-93(2013). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6588655

    [2] Khalighi M A, Uysal M. Survey on free space optical communication: A communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 16, 2231-2258(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6844864

    [3] Uysal M. Graz, Austria. New York: IEEE, 14526239(2014).

    [4] Murphy D V, Kansky J E, Grein M E et al. LLCD operations using the lunar lasercom ground terminal[J]. Proceedings of SPIE, 8971, 89710V(2014).

    [5] Sodnik Z, Smit H, Sans M et al. LLCD operations using the lunar lasercom OGS terminal[J]. Proceedings of SPIE, 8971, 89710W(2014). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2045510

    [6] Biswas A, Kovalik J M, Wright M W et al. LLCD operations using the optical communications telescope laboratory (OCTL)[J]. Proceedings of SPIE, 8971, 89710X(2014). http://spie.org/x648.xml?product_id=2044087

    [7] Oaida B V, Wu W, Erkmen B I et al. Optical link design and validation testing of the optical payload for lasercomm science (OPALS) system[J]. Proceedings of SPIE, 8971, 89710U(2014). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1841894

    [8] Sindiy O, Abrahamson M, Biswas A et al. Lessons learned from optical payload for lasercomm science (OPALS) mission operations. [C]∥AIAA SPACE 2015 Conference and Exposition, AIAA SPACE Forum (AIAA 2015-4657), 1-11(2015).

    [9] Biswas A, Oaida B, Andrews K S et al. Optical payload for lasercomm science (OPALS) link validation during operations from the ISS[J]. Proceedings of SPIE, 9354, 93540F(2015).

    [10] Böhmer K, Gregory M, Heine F et al. Laser communication terminals for the European data relay system[J]. Proceedings of SPIE, 8246, 82460D(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.906798

    [11] Heine F, Mühlnikel G, Zech H et al. Livorno, Italy. New York: IEEE, 14699390(2014).

    [12] Heine F, Mühlnikel G, Zech H et al. LCT for the European data relay system: in orbit commissioning of the Alphasat and Sentinel 1A LCTs[J]. Proceedings of SPIE, 9354, 93540G(2015). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2083117

    [13] Kolev D R, Takenaka H, Munemasa Y et al. New Orleans, LA, USA. New York: IEEE, 15838634(2015).

    [14] Phung D H, Samain E, Maurice N, onboard socrates satellite et al. New Orleans, LA, USA. New York: IEEE, 15838631(2015).

    [15] Takenaka H, Koyama Y, Akioka M et al. In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links[J]. Proceedings of SPIE, 9739, 973903(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2504545

    [16] Anees S, Bhatnagar M R. Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system[J]. IET Optoelectronics, 9, 232-240(2015). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7284796

    [17] Anees S, Bhatnagar M R. Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system[J]. Journal of Optical Communications and Networking, 7, 124-135(2015). http://ieeexplore.ieee.org/document/7035552/

    [18] Stotts L B, Andrews L C, Cherry P C et al. Hybrid optical RF airborne communications[J]. Proceedings of the IEEE, 97, 1109-1127(2009). http://ieeexplore.ieee.org/document/4939408/

    [19] Zech H, Heine F, Tröndle D et al. LCT for EDRS: LEO to GEO optical communications at 1. 8 Gbps between Alphasat and Sentinel 1A[J]. Proceedings of SPIE, 9647, 96470J(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2468434

    [20] Munemasa Y, Fuse T, Kubo-Oka T et al. Design status of the development for a GEO-to-ground optical feeder link, HICALI[J]. Proceedings of SPIE, 10524, 105240F(2018).

    [21] Kim I I, Korevaar E J. Availability of free-space optics (FSO) and hybrid FSO/RF systems[J]. Proceedings of SPIE, 4530, 84-96(2001). http://spie.org/Publications/Proceedings/Paper/10.1117/12.449800

    [22] Leitgeb E, Gebhart M, Birnbacher U et al. High availability of hybrid wireless networks[J]. Proceedings of SPIE, 5465, 238-250(2004). http://spie.org/Publications/Proceedings/Paper/10.1117/12.545456

    [23] Abadi M M, Ghassemlooy Z, Zvanovec S et al. Dual purpose antenna for hybrid free space Optics/RF communication systems[J]. Journal of Lightwave Technology, 34, 3432-3439(2016). http://ieeexplore.ieee.org/document/7476832/

    [24] Shu F, Ao F L, Liao X D. Research on automatic switch conditions forhybrid FSO/RF system[J]. Journal of Guilin University of Electronic Technology, 28, 1-4(2008).

    [25] Tatarko M, Ovseník L. 16th International Carpathian Control Conference (ICCC),May 27-30,2015, Szilvasvarad, Hungary. New York: IEEE, 15287384(2015).

    [26] Usman M, Yang H C, Alouini M S. Practical switching-based hybrid FSO/RF transmission and its performance analysis[J]. IEEE Photonics Journal, 6, 1-13(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6887284

    [27] Nock K, Font C. - 2016 IEEE Military Communications Conference, November 1-3,2016, Baltimore, MD, USA. New York: IEEE, 16546493(2016).

    [28] Abadi M M, Ghassemlooy Z, Zvanovec S, ICC Workshops et al. Paris, France. New York: IEEE, 17009949(2017).

    [29] Lee I E, Ghassemlooy Z, Ng W P, Networks & Digital Sign et al. Manchester, UK. New York: IEEE, 14684047(2014).

    [30] Zhang W Z, Hranilovic S, Shi C. Soft-switching hybrid FSO/RF links using short-length raptor codes: Design and implementation[J]. IEEE Journal on Selected Areas in Communications, 27, 1698-1708(2009).

    [31] Moradi H, Falahpour M, Refai H H et al. On the capacity of hybrid FSO/RF links. [C]∥IEEE Global Telecommunications Conference, December 6-10, 2010, Miami, FL, USA. New York: IEEE, 1-5(2010).

    [32] Shao J H, Su R M, Yao L et al. Performance analysis of soft-switching hybrid FSO/RF links using hybrid coding and modulation[J]. Journal of Electronic Measurement and Instrumentation, 31, 682-687(2017).

    [33] Shokrollahi A. Raptor codes[J]. IEEE Transactions on Information Theory, 52, 2551-2567(2006).

    [34] Abdulhussein A, Oka A, Nguyen T T et al. Rateless coding for hybrid free-space optical and radio-frequency communication[J]. IEEE Transactions on Wireless Communications, 9, 907-913(2010). http://dl.acm.org/citation.cfm?id=1892663

    [35] Su J, Chen H. Research on technology for switchover of hybrid FSO/RF systems using packet loss rate monitoring[J]. Optical Communication Technology, 35, 28-31(2011).

    [36] Lin X D, Xue C, Liu X Y et al. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics, 5, 337-351(2012).

    [37] Liu Z W, Zhou Z Q, Li Z D. Wavefront correction technology based on fuzzy control[J]. Laser & Optoelectronics Progress, 54, 030101(2017).

    [38] Wu J L, Ke X Z. Adaptive optics correction of wavefront sensorless[J]. Laser & Optoelectronics Progress, 55, 030103(2018).

    [39] Li G Y, Dou Q Y, Liu Y G et al. Optical automatic gain-clamped erbium-doped fiber amplifier based on a high-birefringence fiber bragg grating[J]. Acta Optica Sinica, 26, 1308-1312(2006).

    [40] Jia D F, Wang Y Y, Bao H M et al. Experimental studies on the dual-wavelength optical auto gain clamping EDFA[J]. Acta Photonica Sinica, 35, 1538-1541(2006).

    [41] Bagley Z C. Hybrid optical radio frequency airborne communications[J]. Optical Engineering, 51, 055006(2012). http://spie.org/Publications/Journal/10.1117/1.OE.51.5.055006

    [42] Crane R. Prediction of attenuation by rain[J]. IEEE Transactions on Communications, 28, 1717-1733(1980). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1094844

    [43] Nadeem F, Kvicera V, Awan M et al. Weather effects on hybrid FSO/RF communication link[J]. IEEE Journal on Selected Areas in Communications, 27, 1687-1697(2009). http://dl.acm.org/citation.cfm?id=1720342

    [44] Li J. Research and design of high speed adaptive equalizer[J]. Information & Communications, 31, 67-68(2018).

    [45] Chen Q, Yang X P, Da X Y et al. A fast super-exponential iteration decision feedback blind equalization algorithm for carrier recovery of aeronautical channel[J]. Journal of Central South University (Science and Technology), 44, 3707-3712(2013).

    [46] Zhao Z W, Zhang M G, Wu Z S. Analytic specific attenuation model for rain for use in prediction methods[J]. International Journal of Infrared & Millimeter Waves, 22, 113-120(2001). http://link.springer.com/article/10.1023/A%3A1010717821659

    [47] Oguchi T. Electromagnetic wave propagation and scattering in rain and other hydrometeors[J]. Proceedings of the IEEE, 71, 1029-1078(1983). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1456992

    [48] Wu C J, Yan C X, Gao Z L. Overview of space laser communications[J]. Chinese Optics, 6, 670-680(2013).

    [49] Chang S, Tong S F, Jiang H L et al. Optical phase-locked loop technology in inter-satellite high-speed coherent laser communication systems[J]. Acta Optica Sinica, 37, 0206004(2017).

    [50] Zeng F, Gao S J, San X G et al. Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 9, 65-73(2016).

    [51] Li S M, Zhang Y Q. Annular facula detection and error compensation of four-quadrant photoelectric detector in space laser communication[J]. Chinese Journal of Lasers, 44, 1106005(2017).

    [52] Chen S J, Zhang L, Wang J Y. Effects of digital to analog converter resolution on ATM system tracking accuracy[J]. Chinese Journal of Lasers, 44, 0806004(2017).

    Liang Ding, Zhiyong Wu, Yucong Gu, Zechao Gao, Jintian Hu, Shuang Ma. Key Technologies of Wireless Laser and Radio Frequency Complementary Communication System[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060004
    Download Citation