• Opto-Electronic Advances
  • Vol. 3, Issue 6, 190039-1 (2020)
Elizabeth Lee1、2, Biao Sun1, Jiaqi Luo1、2, Satnam Singh1, Deepak Choudhury1, Derrick Yong1, Xia Yu1、3、*, and Qijie Wang2
Author Affiliations
  • 1Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Innovis, 138634 Singapore
  • 2School of Electrical & Electronic Engi-neering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
  • 3Currently with School of Instrumentation and Optoe-lectronic Engineering, Beihang University, 37 Xueyuan Road, Beijing 100083, China
  • show less
    DOI: 10.29026/oea.2020.190039 Cite this Article
    Elizabeth Lee, Biao Sun, Jiaqi Luo, Satnam Singh, Deepak Choudhury, Derrick Yong, Xia Yu, Qijie Wang. Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels[J]. Opto-Electronic Advances, 2020, 3(6): 190039-1 Copy Citation Text show less
    References

    [1] N Gehlich, T Bonhoff, L Sisken, M Ramme, C Gaida et al. Utilizing the transparency of semiconductors via "backside" machining with a nanosecond 2 μm Tm:fiber laser. Proc SPIE, 8968, 89680W(2014).

    [2] B Voisiat, D Gaponov, P Gečys, L Lavoute, M Silva et al. Material processing with ultra-short pulse lasers working in 2μm wavelength range. Proc SPIE, 9350, 935014(2015).

    [3] R L Blackmon, N M Fried, P B Irby. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt, 16, 071403(2011).

    [4] F Jansen, F Stutzki, C Jauregui, J Limpert, A Tünnermann. High-power very large mode-area thulium-doped fiber laser. Opt Lett, 37, 4546-4548(2012).

    [5] P Maine, D Strickland, P Bado, M Pessot, G Mourou. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J Quantum Electron, 24, 398-403(1988).

    [6] C Gaida, M Gebhardt, T Heuermann, F Stutzki, C Jauregui et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt Lett, 43, 5853-5856(2018).

    [7] C Gaida, M Gebhardt, F Stutzki, C Jauregui, J Limpert et al. 90 fs pulses with> 5 GW peak power from a high repetition rate Tm-doped fiber CPA system. In Advanced Solid State Lasers 2017 (Optical Society of America, 2017)(2017).

    [8] D Gaponov, L Lavoute, N Ducros, A Hideur, S Février et al. 10 μJ-Class compact thulium all-fibered CPA system. In 2017 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2017)(2017).

    [9] J Q Luo, B Sun, J H Ji, E L Tan, Y Zhang et al. High-efficiency femtosecond Raman soliton generation with a tunable wavelength beyond 2μm. Opt Lett, 42, 1568-1571(2017).

    [10] B Lyot. Optical apparatus with wide field using interference of polarized light. C R Acad Sci, 197, 1593(1933).

    [11] R Imani, S H Emami, P R Moshtagh, N Baheiraei, A M Sharifi. Preparation and characterization of agarose-gelatin blend hydrogels as a cell encapsulation matrix: an in-vitro study. J Macromol Sci, Part B, 51, 1606-1616(2012).

    [12] A Sincore, J D Bradford, J Cook, L Shah, M C Richardson. High average power thulium-doped silica fiber lasers: review of systems and concepts. IEEE J Sel Top Quantum Electron, 24, 0901808(2018).

    [13] D N Schimpf, E Seise, J Limpert, A Tünnermann. Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples. Opt Express, 16, 8876-8886(2008).

    [14] D N Schimpf, E Seise, J Limpert, A Tünnermann. Self-phase modulation compensated by positive dispersion in chirped-pulse systems. Opt Express, 17, 4997-5007(2009).

    [15] E Lee, J Q Luo, B Sun, V Ramalingam, Y Zhang et al. Flexible single-mode delivery of a high-power 2μm pulsed laser using an antiresonant hollow-core fiber. Opt Lett, 43, 2732-2735(2018).

    [16] D N Schimpf, J Limpert, A Tünnermann. Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum. Opt Express, 15, 16945-16953(2007).

    [17] Y H Chen, S Raghuraman, D Ho, D Y Tang, S Yoo. Normal dispersion thulium fiber for ultrafast near-2 μm fiber laser. In 2018 Conference on Lasers and Electro-Optics: CLEO: Applications and Technology 2018 (Optical Society of America, 2018)(2018).

    [18] T Bartulevicius, S Frankinas, A Michailovas, R Vasilyeu, V Smirnov et al. Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile. Opt Express, 25, 19856-19862(2017).

    [19] S Turunen, A M Haaparanta, R Äänismaa, M Kellomäki. Chemical and topographical patterning of hydrogels for neural cell guidance in vitro. J Tissue Eng Regen Med, 7, 253-270(2013).

    [20] T Y Yu, C K Ober. Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules, 4, 1126-1131(2003).

    [21] M Nikkhah, F Edalat, S Manoucheri, A Khademhosseini. Engineering microscale topographies to control the cell-substrate interface. Biomaterials, 33, 5230-5246(2012).

    [22] H N Kim, A Jiao, N S Hwang, M S Kim, D H Kang et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev, 65, 536-558(2013).

    [23] M J Dalby, N Gadegaard, R O C Oreffo. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater, 13, 558-569(2014).

    [24] F Brandl, F Sommer, A Goepferich. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials, 28, 134-146(2007).

    [25] K J Burg, S Porter, J F Kellam. Biomaterial developments for bone tissue engineering. Biomaterials, 21, 2347-2359(2000).

    [26] A Ranella, M Barberoglou, S Bakogianni, C Fotakis, E Stratakis. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater, 6, 2711-2720(2010).

    [27] C G Anene-Nzelu, D Choudhury, H P Li, A Fraiszudeen, K Y Peh et al. Scalable cell alignment on optical media substrates. Biomaterials, 34, 5078-5087(2013).

    [28] D Falconnet, G Csucs, H M Grandin, M Textor. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials, 27, 3044-3063(2006).

    [29] A A Chaudhari, K Vig, D R Baganizi, R Sahu, S Dixit et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci, 17, 1974(2016).

    [30] X H Liu, P X Ma. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng, 32, 477-486(2004).

    [31] F Guillemot, A Souquet, S Catros, B Guillotin, J Lopez et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater, 6, 2494-2500(2010).

    [32] B Subia, J Kundu, S C Kundu. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Eng, 141(2010).

    [33] D B Chrisey. The power of direct writing. Science, 289, 879-881(2000).

    [34] K C Hribar, P Soman, J Warner, P Chung, S C Chen. Light-assisted direct-write of 3D functional biomaterials. Lab Chip, 14, 268-275(2014).

    [35] P K Wu, B R Ringeisen, D B Krizman, C G Frondoza, M Brooks et al. Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Rev Sci Instrum, 74, 2546-2557(2003).

    [36] F Johnston-Banks et al. Gelatine. Food Gels, 233-289(1990).

    [37] A Tijore, S A Irvine, U Sarig, P Mhaisalkar, V Baisane et al. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication, 10, 025003(2018).

    [38] A Kobuszewska, E Tomecka, K Zukowski, E Jastrzebska, M Chudy et al. Heart-on-a-Chip: an investigation of the influence of static and perfusion conditions on cardiac (H9C2) cell proliferation, morphology, and alignment. SLAS Technol: Transl Life Sci Innov, 22, 536-546(2017).

    [39] N Korin, A Bransky, M Khoury, U Dinnar, S Levenberg. Design of well and groove microchannel bioreactors for cell culture. Biotechnol Bioeng, 102, 1222-1230(2009).

    [40] S Gaspard, M Oujja, C Abrusci, F Catalina, S Lazare et al. Laser induced foaming and chemical modifications of gelatine films. J Photochem Photobiol A: Chem, 193, 187-192(2008).

    [41] S Lazare, V Tokarev, A Sionkowska, M Wiśniewski. Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl Phys A, 81, 465-470(2005).

    [42] R C Simoni, G F Lemes, S Fialho, O H Gonçalves, A M Gozzo et al. Effect of drying method on mechanical, thermal and water absorption properties of enzymatically crosslinked gelatin hydrogels. An Acad Bras Ciênc, 89, 745-755(2017).

    [43] H Emoto, H Kambic, J F Chen, Y Nosé. Characterization of rehydrated gelatin gels. Artif Organs, 15, 29-34(1991).

    [44] P Viswanathan, M G Ondeck, S Chirasatitsin, K Ngamkham, G C Reilly et al. 3D surface topology guides stem cell adhesion and differentiation. Biomaterials, 52, 140-147(2015).

    [45] F J O'Brien, B A Harley, I V Yannas, L J Gibson. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26, 433-441(2005).

    [46] P Eiselt, J Yeh, R K Latvala, L D Shea, D J Mooney. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 21, 1921-1927(2000).

    [47] T G Van Tienen, G J C Heijkants Ralf, P Buma, J H de Groot, A J Pennings et al. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials, 23, 1731-1738(2002).

    Elizabeth Lee, Biao Sun, Jiaqi Luo, Satnam Singh, Deepak Choudhury, Derrick Yong, Xia Yu, Qijie Wang. Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels[J]. Opto-Electronic Advances, 2020, 3(6): 190039-1
    Download Citation