[1] Zhao L N, Dai Y, Zhao J L et al. Super-resolution imaging of pupil filter using deformable mirror[J]. Laser & Optoelectronics Progress, 54, 041801(2017).
[2] Liu C, Jin L D, Ye A P. Progress in and prospect of microsphere optical nanoscopy[J]. Laser & Optoelectronics Progress, 53, 070003(2016).
[3] Zhang Z L, Qi P F, Guo L J et al. Review on super-resolution near-field terahertz imaging methods[J]. Acta Optica Sinica, 43, 0600001(2023).
[4] Chen X, Wang Y, Zhang X W et al. Advances in super-resolution fluorescence microscopy for the study of nano-cell interactions[J]. Biomaterials Science, 9, 5484-5496(2021).
[5] Eisele M, Cocker T L, Huber M A et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution[J]. Nature Photonics, 8, 841-845(2014).
[6] Cocker T L, Jelic V, Gupta M et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 7, 620-625(2013).
[7] Binnig G, Rohrer H, Gerber C et al. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters, 49, 57-61(1982).
[8] Lee J, Perdue S M, Rodriguez Perez A et al. Vibronic motion with joint angstrom-femtosecond resolution observed through Fano progressions recorded within one molecule[J]. ACS Nano, 8, 54-63(2014).
[9] Mahapatra S, Li L F, Schultz J F et al. Tip-enhanced Raman spectroscopy: chemical analysis with nanoscale to angstrom scale resolution[J]. The Journal of Chemical Physics, 153, 010902(2020).
[10] Marchini S, Günther S, Wintterlin J. Scanning tunneling microscopy of graphene on Ru(0001)[J]. Physical Review B, 76, 5429(2007).
[11] Okuno Y, Lancry O, Tempez A et al. Probing the nanoscale light emission properties of a CVD-grown MoS2 monolayer by tip-enhanced photoluminescence[J]. Nanoscale, 10, 14055-14059(2018).
[12] Hasegawa Y, Avouris P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy[J]. Physical Review Letters, 71, 1071-1074(1993).
[13] Crommie M F, Lutz C P, Eigler D M. Imaging standing waves in a two-dimensional electron gas[J]. Nature, 363, 524-527(1993).
[14] Coleman R V, Giambattista B, Hansma P K et al. Scanning tunnelling microscopy of charge-density waves in transition metal chalcogenides[J]. Advances in Physics, 37, 559-644(1988).
[15] Feenstra R M. Electronic states of metal atoms on the GaAs(110) surface studied by scanning tunneling microscopy[J]. Physical Review Letters, 63, 1412-1415(1989).
[16] Fu Y S, Kawamura M, Igarashi K et al. Imaging the two-component nature of Dirac-Landau levels in the topological surface state of Bi2Se3[J]. Nature Physics, 10, 815-819(2014).
[17] Hess H F, Robinson R B, Dynes R C et al. Scanning-tunneling-microscope observation of the abrikosov flux lattice and the density of states near and inside a fluxoid[J]. Physical Review Letters, 62, 214-216(1989).
[18] Loth S, Etzkorn M, Lutz C P et al. Measurement of fast electron spin relaxation times with atomic resolution[J]. Science, 329, 1628-1630(2010).
[19] Wu S W, Ho W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope[J]. Physical Review B, 82, 085444(2010).
[20] Li S W, Chen S Y, Li J E et al. Joint space-time coherent vibration driven conformational transitions in a single molecule[J]. Physical Review Letters, 119, 176002(2017).
[21] Linderoth T R, Horch S, Lægsgaard E et al. Surface diffusion of Pt on Pt(110): arrhenius behavior of long jumps[J]. Physical Review Letters, 78, 4978-4981(1997).
[22] Swartzentruber B S. Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy[J]. Physical Review Letters, 76, 459-462(1996).
[23] Lozano M L, Tringides M C. Surface diffusion measurements from STM tunneling current fluctuations[J]. Europhysics Letters (EPL), 30, 537-542(1995).
[24] Weiss S, Ogletree D F, Botkin D et al. Ultrafast scanning probe microscopy[J]. Applied Physics Letters, 63, 2567-2569(1993).
[25] Botkin D, Glass J, Chemla D S et al. Advances in ultrafast scanning tunneling microscopy[J]. Applied Physics Letters, 69, 1321-1323(1996).
[26] Nunes G, Jr, Freeman M R. Picosecond resolution in scanning tunneling microscopy[J]. Science, 262, 1029-1032(1993).
[27] Steeves G M, Elezzabi A Y, Freeman M R. Nanometer-scale imaging with an ultrafast scanning tunneling microscope[J]. Applied Physics Letters, 72, 504-506(1998).
[28] Khusnatdinov N N, Nagle T J, Nunes G, Jr. Ultrafast scanning tunneling microscopy with 1 nm resolution[J]. Applied Physics Letters, 77, 4434-4436(2000).
[29] Moult I, Herve M, Pennec Y. Ultrafast spectroscopy with a scanning tunneling microscope[J]. Applied Physics Letters, 98, 233103(2011).
[30] Jersch J, Demming F, Fedotov I et al. Time-resolved current response of a nanosecond laser pulse illuminated STM tip[J]. Applied Physics A, 68, 637-641(1999).
[31] Hamers R J, Cahill D G. Ultrafast time resolution in scanned probe microscopies[J]. Applied Physics Letters, 57, 2031-2033(1990).
[32] Grafström S. Analysis and compensation of thermal effects in laser-assisted scanning tunneling microscopy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 9, 568-572(1991).
[33] Dolocan A, Acharya D P, Zahl P et al. Two-color ultrafast photoexcited scanning tunneling microscopy[J]. The Journal of Physical Chemistry C, 115, 10033-10043(2011).
[34] Takeuchi O, Aoyama M, Oshima R et al. Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy[J]. Applied Physics Letters, 85, 3268-3270(2004).
[35] Terada Y, Yoshida S, Takeuchi O et al. Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy[J]. Nature Photonics, 4, 869-874(2010).
[36] Terada Y, Yoshida S, Takeuchi O et al. Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics[J]. Journal of Physics: Condensed Matter, 22, 264008(2010).
[37] Yoshida S, Terada Y, Yokota M et al. Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy[J]. Applied Physics Express, 6, 016601(2013).
[38] Yokota M, Yoshida S, Mera Y et al. Bases for time-resolved probing of transient carrier dynamics by optical pump-probe scanning tunneling microscopy[J]. Nanoscale, 5, 9170-9175(2013).
[39] Snegir S V, Yu P, Maurel F et al. Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111)[J]. Langmuir, 30, 13556-13563(2014).
[40] Hiromoto N, Mori K, Sato J. Study on material-classification of objects detected by the THz passive body scanner for security screening[C](2016).
[41] Kawase K, Shibuya T, Hayashi S et al. THz imaging techniques for nondestructive inspections[J]. Comptes Rendus Physique, 11, 510-518(2010).
[42] Png G M, Choi J W, Ng B W H et al. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements[J]. Physics in Medicine and Biology, 53, 3501-3517(2008).
[43] Yarotski D A, Averitt R D, Negre N et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots[J]. Journal of the Optical Society of America B, 19, 1480-1484(2002).
[44] Wan W J, Li H, Cao J C. Research progress on terahertz quantum cascade lasers[J]. Chinese Journal of Lasers, 47, 0701009(2020).
[45] Wang C, Xu W, Mei H Y et al. Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser[J]. Chinese Physics B, 29, 084101(2020).
[46] Liu W H, Liu Y C, Jia Q K et al. Terahertz laser diode using field emitter arrays[J]. Physical Review B, 103, 035109(2021).
[47] Asada M, Suzuki S. Terahertz emitter using resonant-tunneling diode and applications[J]. Sensors, 21, 1384(2021).
[48] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016).
[49] Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology[J]. Optical Engineering, 56, 010901(2017).
[50] Bacon D R, Madéo J, Dani K M. Photoconductive emitters for pulsed terahertz generation[J]. Journal of Optics, 23, 064001(2021).
[51] Singh A, Pashkin A, Winnerl S et al. Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er: fibre laser[J]. Light: Science & Applications, 9, 30(2020).
[52] Tian Q L, Xu H X, Wang Y et al. Efficient generation of a high-field terahertz pulse train in bulk lithium niobate crystals by optical rectification[J]. Optics Express, 29, 9624-9634(2021).
[53] Blanchard F, Razzari L, Bandulet H C et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 15, 13212-13220(2007).
[54] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).
[55] Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2, 605-609(2008).
[56] Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses[J]. Applied Physics Letters, 101, 011105(2012).
[57] Xie X, Dai J M, Zhang X C. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters, 96, 075005(2006).
[58] Jelic V, Iwaszczuk K, Nguyen P H et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 13, 591-598(2017).
[59] Cocker T L, Peller D, Yu P et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging[J]. Nature, 539, 263-267(2016).
[60] Ammerman S E, Jelic V, Wei Y et al. Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons[J]. Nature Communications, 12, 6794(2021).
[61] Peller D, Kastner L Z, Buchner T et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch[J]. Nature, 585, 58-62(2020).
[62] Yoshida S, Hirori H, Tachizaki T et al. Subcycle transient scanning tunneling spectroscopy with visualization of enhanced terahertz near field[J]. ACS Photonics, 6, 1356-1364(2019).
[63] Wintterlin J, Trost J, Renisch S et al. Real-time STM observations of atomic equilibrium fluctuations in an adsorbate system: O/Ru(0001)[J]. Surface Science, 394, 159-169(1997).
[64] Rost M J, Crama L, Schakel P et al. Scanning probe microscopes go video rate and beyond[J]. Review of Scientific Instruments, 76, 053710(2005).
[65] Besenbacher F, Lægsgaard E, Stensgaard I. Fast-scanning STM studies[J]. Materials Today, 8, 26-30(2005).
[66] Groeneveld R H M, van Kempen H. The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope[J]. Applied Physics Letters, 69, 2294-2296(1996).
[67] Freeman M R, Nunes G, Jr. Time-resolved scanning tunneling microscopy through tunnel distance modulation[J]. Applied Physics Letters, 63, 2633-2635(1993).
[68] Steeves G M, Elezzabi A Y, Freeman M R. Advances in picosecond scanning tunneling microscopy via junction mixing[J]. Applied Physics Letters, 70, 1909-1911(1997).
[69] Pfeiffer W, Sattler F, Vogler S et al. Rapid communication photoelectron emission in femtosecond laser assisted scanning tunneling microscopy[J]. Applied Physics B, 64, 265-268(1997).
[70] Tian Y, Yang F, Guo C Y et al. Recent advances in ultrafast time-resolved scanning tunneling microscopy[J]. Surface Review and Letters, 25, 1841003(2018).
[71] Terada Y, Aoyama M, Kondo H et al. Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy[J]. Nanotechnology, 18, 044028(2007).
[72] Yoshida S, Terada Y, Oshima R et al. Nanoscale probing of transient carrier dynamics modulated in a GaAs-PIN junction by laser-combined scanning tunneling microscopy[J]. Nanoscale, 4, 757-761(2012).
[73] Yoshida S, Yokota M, Takeuchi O et al. Single-atomic-level probe of transient carrier dynamics by laser-combined scanning tunneling microscopy[J]. Applied Physics Express, 6, 032401(2013).
[74] Yoshida S, Aizawa Y, Wang Z H et al. Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy[J]. Nature Nanotechnology, 9, 588-593(2014).
[75] Kloth P, Thias T, Bunjes O et al. A versatile implementation of pulsed optical excitation in scanning tunneling microscopy[J]. Review of Scientific Instruments, 87, 123702(2016).
[76] Kloth P, Wenderoth M. From time-resolved atomic-scale imaging of individual donors to their cooperative dynamics[J]. Science Advances, 3, e1601552(2017).
[77] Yarotski D A, Taylor A J. Improved temporal resolution in junction-mixing ultrafast scanning tunneling microscopy[J]. Applied Physics Letters, 81, 1143-1145(2002).
[78] Cocker T L, Jelic V, Hillenbrand R et al. Nanoscale terahertz scanning probe microscopy[J]. Nature Photonics, 15, 558-569(2021).
[79] Wang L K, Xia Y P, Ho W. Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity[J]. Science, 376, 401-405(2022).
[80] Sun L H. Study on time-resolved scanning tunneling microscopy and ultrafast dynamics of semiconductor surface[D](2018).
[81] Keldysh L. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 20, 1307-1314(1965).
[82] Hayazawa N, Tarun A, Taguchi A et al. Development of tip-enhanced near-field optical spectroscopy and microscopy[J]. Japanese Journal of Applied Physics, 48, 08JA02(2009).
[83] Luo Y, Jelic V, Chen G et al. Nanoscale terahertz STM imaging of a metal surface[J]. Physical Review B, 102, 205417(2020).
[84] Fowler R H, Nordheim L. Electron emission in intense electric fields[J]. Proceedings of the Royal Society of London, 119, 173-181(1928).
[85] Zheltikov A M. Keldysh parameter, photoionization adiabaticity, and the tunneling time[J]. Physical Review A, 94, 043412(2016).
[86] Cocker T L. Exploring conductivity in nanomaterials with terahertz pulses[D](2012).
[87] Yoshioka K, Katayama I, Arashida Y et al. Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields[J]. Nano Letters, 18, 5198-5204(2018).
[88] Yoshioka K, Katayama I, Minami Y et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields[J]. Nature Photonics, 10, 762-765(2016).
[89] Li T, Quan B, Fang G et al. Flexible THz carrier-envelope phase shifter based on metamaterials[J]. Advanced Optical Materials, 10, 2200541(2022).
[90] Chen C J, Smith W F. Introduction to scanning tunneling microscopy[J]. American Journal of Physics, 62, 573-574(1994).
[91] Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 34, 1793-1803(1963).
[92] Peller D, Roelcke C, Kastner L Z et al. Quantitative sampling of atomic-scale electromagnetic waveforms[J]. Nature Photonics, 15, 143-147(2021).
[93] Muller M, Martin Sabanes N, Kampfrath T et al. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction[J]. ACS Photonics, 7, 2046-2055(2020).
[94] Kimura K, Morinaga Y, Imada H et al. Terahertz-field-driven scanning tunneling luminescence spectroscopy[J]. ACS Photonics, 8, 982-987(2021).
[95] Yoshida S, Arashida Y, Hirori H et al. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations[J]. ACS Photonics, 8, 315-323(2021).