• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811001 (2023)
Hongbo Li1、2、3、4、5, Jingyin Xu4、5, Wenyin Wei4、5, En'en Li1、2、3、4、5, Kai Zhang4、5, Hong Li4、5, Yirong Wu1、2、3、4、5, Tianwu Wang1、2、3、4、5、*, and Guangyou Fang1、2、3、4、5、**
Author Affiliations
  • 1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
  • 3School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Greater Bay Area Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, Guangdong, China
  • 5Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, Guangdong, China
  • show less
    DOI: 10.3788/LOP231383 Cite this Article Set citation alerts
    Hongbo Li, Jingyin Xu, Wenyin Wei, En'en Li, Kai Zhang, Hong Li, Yirong Wu, Tianwu Wang, Guangyou Fang. Progress of High Spatiotemporal Resolution Terahertz Scanning Tunneling Microscope for Near-Field Imaging[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811001 Copy Citation Text show less
    References

    [1] Zhao L N, Dai Y, Zhao J L et al. Super-resolution imaging of pupil filter using deformable mirror[J]. Laser & Optoelectronics Progress, 54, 041801(2017).

    [2] Liu C, Jin L D, Ye A P. Progress in and prospect of microsphere optical nanoscopy[J]. Laser & Optoelectronics Progress, 53, 070003(2016).

    [3] Zhang Z L, Qi P F, Guo L J et al. Review on super-resolution near-field terahertz imaging methods[J]. Acta Optica Sinica, 43, 0600001(2023).

    [4] Chen X, Wang Y, Zhang X W et al. Advances in super-resolution fluorescence microscopy for the study of nano-cell interactions[J]. Biomaterials Science, 9, 5484-5496(2021).

    [5] Eisele M, Cocker T L, Huber M A et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution[J]. Nature Photonics, 8, 841-845(2014).

    [6] Cocker T L, Jelic V, Gupta M et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 7, 620-625(2013).

    [7] Binnig G, Rohrer H, Gerber C et al. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters, 49, 57-61(1982).

    [8] Lee J, Perdue S M, Rodriguez Perez A et al. Vibronic motion with joint angstrom-femtosecond resolution observed through Fano progressions recorded within one molecule[J]. ACS Nano, 8, 54-63(2014).

    [9] Mahapatra S, Li L F, Schultz J F et al. Tip-enhanced Raman spectroscopy: chemical analysis with nanoscale to angstrom scale resolution[J]. The Journal of Chemical Physics, 153, 010902(2020).

    [10] Marchini S, Günther S, Wintterlin J. Scanning tunneling microscopy of graphene on Ru(0001)[J]. Physical Review B, 76, 5429(2007).

    [11] Okuno Y, Lancry O, Tempez A et al. Probing the nanoscale light emission properties of a CVD-grown MoS2 monolayer by tip-enhanced photoluminescence[J]. Nanoscale, 10, 14055-14059(2018).

    [12] Hasegawa Y, Avouris P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy[J]. Physical Review Letters, 71, 1071-1074(1993).

    [13] Crommie M F, Lutz C P, Eigler D M. Imaging standing waves in a two-dimensional electron gas[J]. Nature, 363, 524-527(1993).

    [14] Coleman R V, Giambattista B, Hansma P K et al. Scanning tunnelling microscopy of charge-density waves in transition metal chalcogenides[J]. Advances in Physics, 37, 559-644(1988).

    [15] Feenstra R M. Electronic states of metal atoms on the GaAs(110) surface studied by scanning tunneling microscopy[J]. Physical Review Letters, 63, 1412-1415(1989).

    [16] Fu Y S, Kawamura M, Igarashi K et al. Imaging the two-component nature of Dirac-Landau levels in the topological surface state of Bi2Se3[J]. Nature Physics, 10, 815-819(2014).

    [17] Hess H F, Robinson R B, Dynes R C et al. Scanning-tunneling-microscope observation of the abrikosov flux lattice and the density of states near and inside a fluxoid[J]. Physical Review Letters, 62, 214-216(1989).

    [18] Loth S, Etzkorn M, Lutz C P et al. Measurement of fast electron spin relaxation times with atomic resolution[J]. Science, 329, 1628-1630(2010).

    [19] Wu S W, Ho W. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope[J]. Physical Review B, 82, 085444(2010).

    [20] Li S W, Chen S Y, Li J E et al. Joint space-time coherent vibration driven conformational transitions in a single molecule[J]. Physical Review Letters, 119, 176002(2017).

    [21] Linderoth T R, Horch S, Lægsgaard E et al. Surface diffusion of Pt on Pt(110): arrhenius behavior of long jumps[J]. Physical Review Letters, 78, 4978-4981(1997).

    [22] Swartzentruber B S. Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy[J]. Physical Review Letters, 76, 459-462(1996).

    [23] Lozano M L, Tringides M C. Surface diffusion measurements from STM tunneling current fluctuations[J]. Europhysics Letters (EPL), 30, 537-542(1995).

    [24] Weiss S, Ogletree D F, Botkin D et al. Ultrafast scanning probe microscopy[J]. Applied Physics Letters, 63, 2567-2569(1993).

    [25] Botkin D, Glass J, Chemla D S et al. Advances in ultrafast scanning tunneling microscopy[J]. Applied Physics Letters, 69, 1321-1323(1996).

    [26] Nunes G, Jr, Freeman M R. Picosecond resolution in scanning tunneling microscopy[J]. Science, 262, 1029-1032(1993).

    [27] Steeves G M, Elezzabi A Y, Freeman M R. Nanometer-scale imaging with an ultrafast scanning tunneling microscope[J]. Applied Physics Letters, 72, 504-506(1998).

    [28] Khusnatdinov N N, Nagle T J, Nunes G, Jr. Ultrafast scanning tunneling microscopy with 1 nm resolution[J]. Applied Physics Letters, 77, 4434-4436(2000).

    [29] Moult I, Herve M, Pennec Y. Ultrafast spectroscopy with a scanning tunneling microscope[J]. Applied Physics Letters, 98, 233103(2011).

    [30] Jersch J, Demming F, Fedotov I et al. Time-resolved current response of a nanosecond laser pulse illuminated STM tip[J]. Applied Physics A, 68, 637-641(1999).

    [31] Hamers R J, Cahill D G. Ultrafast time resolution in scanned probe microscopies[J]. Applied Physics Letters, 57, 2031-2033(1990).

    [32] Grafström S. Analysis and compensation of thermal effects in laser-assisted scanning tunneling microscopy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 9, 568-572(1991).

    [33] Dolocan A, Acharya D P, Zahl P et al. Two-color ultrafast photoexcited scanning tunneling microscopy[J]. The Journal of Physical Chemistry C, 115, 10033-10043(2011).

    [34] Takeuchi O, Aoyama M, Oshima R et al. Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy[J]. Applied Physics Letters, 85, 3268-3270(2004).

    [35] Terada Y, Yoshida S, Takeuchi O et al. Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy[J]. Nature Photonics, 4, 869-874(2010).

    [36] Terada Y, Yoshida S, Takeuchi O et al. Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics[J]. Journal of Physics: Condensed Matter, 22, 264008(2010).

    [37] Yoshida S, Terada Y, Yokota M et al. Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy[J]. Applied Physics Express, 6, 016601(2013).

    [38] Yokota M, Yoshida S, Mera Y et al. Bases for time-resolved probing of transient carrier dynamics by optical pump-probe scanning tunneling microscopy[J]. Nanoscale, 5, 9170-9175(2013).

    [39] Snegir S V, Yu P, Maurel F et al. Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111)[J]. Langmuir, 30, 13556-13563(2014).

    [40] Hiromoto N, Mori K, Sato J. Study on material-classification of objects detected by the THz passive body scanner for security screening[C](2016).

    [41] Kawase K, Shibuya T, Hayashi S et al. THz imaging techniques for nondestructive inspections[J]. Comptes Rendus Physique, 11, 510-518(2010).

    [42] Png G M, Choi J W, Ng B W H et al. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements[J]. Physics in Medicine and Biology, 53, 3501-3517(2008).

    [43] Yarotski D A, Averitt R D, Negre N et al. Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots[J]. Journal of the Optical Society of America B, 19, 1480-1484(2002).

    [44] Wan W J, Li H, Cao J C. Research progress on terahertz quantum cascade lasers[J]. Chinese Journal of Lasers, 47, 0701009(2020).

    [45] Wang C, Xu W, Mei H Y et al. Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser[J]. Chinese Physics B, 29, 084101(2020).

    [46] Liu W H, Liu Y C, Jia Q K et al. Terahertz laser diode using field emitter arrays[J]. Physical Review B, 103, 035109(2021).

    [47] Asada M, Suzuki S. Terahertz emitter using resonant-tunneling diode and applications[J]. Sensors, 21, 1384(2021).

    [48] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016).

    [49] Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology[J]. Optical Engineering, 56, 010901(2017).

    [50] Bacon D R, Madéo J, Dani K M. Photoconductive emitters for pulsed terahertz generation[J]. Journal of Optics, 23, 064001(2021).

    [51] Singh A, Pashkin A, Winnerl S et al. Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er: fibre laser[J]. Light: Science & Applications, 9, 30(2020).

    [52] Tian Q L, Xu H X, Wang Y et al. Efficient generation of a high-field terahertz pulse train in bulk lithium niobate crystals by optical rectification[J]. Optics Express, 29, 9624-9634(2021).

    [53] Blanchard F, Razzari L, Bandulet H C et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 15, 13212-13220(2007).

    [54] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).

    [55] Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2, 605-609(2008).

    [56] Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses[J]. Applied Physics Letters, 101, 011105(2012).

    [57] Xie X, Dai J M, Zhang X C. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters, 96, 075005(2006).

    [58] Jelic V, Iwaszczuk K, Nguyen P H et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 13, 591-598(2017).

    [59] Cocker T L, Peller D, Yu P et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging[J]. Nature, 539, 263-267(2016).

    [60] Ammerman S E, Jelic V, Wei Y et al. Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons[J]. Nature Communications, 12, 6794(2021).

    [61] Peller D, Kastner L Z, Buchner T et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch[J]. Nature, 585, 58-62(2020).

    [62] Yoshida S, Hirori H, Tachizaki T et al. Subcycle transient scanning tunneling spectroscopy with visualization of enhanced terahertz near field[J]. ACS Photonics, 6, 1356-1364(2019).

    [63] Wintterlin J, Trost J, Renisch S et al. Real-time STM observations of atomic equilibrium fluctuations in an adsorbate system: O/Ru(0001)[J]. Surface Science, 394, 159-169(1997).

    [64] Rost M J, Crama L, Schakel P et al. Scanning probe microscopes go video rate and beyond[J]. Review of Scientific Instruments, 76, 053710(2005).

    [65] Besenbacher F, Lægsgaard E, Stensgaard I. Fast-scanning STM studies[J]. Materials Today, 8, 26-30(2005).

    [66] Groeneveld R H M, van Kempen H. The capacitive origin of the picosecond electrical transients detected by a photoconductively gated scanning tunneling microscope[J]. Applied Physics Letters, 69, 2294-2296(1996).

    [67] Freeman M R, Nunes G, Jr. Time-resolved scanning tunneling microscopy through tunnel distance modulation[J]. Applied Physics Letters, 63, 2633-2635(1993).

    [68] Steeves G M, Elezzabi A Y, Freeman M R. Advances in picosecond scanning tunneling microscopy via junction mixing[J]. Applied Physics Letters, 70, 1909-1911(1997).

    [69] Pfeiffer W, Sattler F, Vogler S et al. Rapid communication photoelectron emission in femtosecond laser assisted scanning tunneling microscopy[J]. Applied Physics B, 64, 265-268(1997).

    [70] Tian Y, Yang F, Guo C Y et al. Recent advances in ultrafast time-resolved scanning tunneling microscopy[J]. Surface Review and Letters, 25, 1841003(2018).

    [71] Terada Y, Aoyama M, Kondo H et al. Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy[J]. Nanotechnology, 18, 044028(2007).

    [72] Yoshida S, Terada Y, Oshima R et al. Nanoscale probing of transient carrier dynamics modulated in a GaAs-PIN junction by laser-combined scanning tunneling microscopy[J]. Nanoscale, 4, 757-761(2012).

    [73] Yoshida S, Yokota M, Takeuchi O et al. Single-atomic-level probe of transient carrier dynamics by laser-combined scanning tunneling microscopy[J]. Applied Physics Express, 6, 032401(2013).

    [74] Yoshida S, Aizawa Y, Wang Z H et al. Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy[J]. Nature Nanotechnology, 9, 588-593(2014).

    [75] Kloth P, Thias T, Bunjes O et al. A versatile implementation of pulsed optical excitation in scanning tunneling microscopy[J]. Review of Scientific Instruments, 87, 123702(2016).

    [76] Kloth P, Wenderoth M. From time-resolved atomic-scale imaging of individual donors to their cooperative dynamics[J]. Science Advances, 3, e1601552(2017).

    [77] Yarotski D A, Taylor A J. Improved temporal resolution in junction-mixing ultrafast scanning tunneling microscopy[J]. Applied Physics Letters, 81, 1143-1145(2002).

    [78] Cocker T L, Jelic V, Hillenbrand R et al. Nanoscale terahertz scanning probe microscopy[J]. Nature Photonics, 15, 558-569(2021).

    [79] Wang L K, Xia Y P, Ho W. Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity[J]. Science, 376, 401-405(2022).

    [80] Sun L H. Study on time-resolved scanning tunneling microscopy and ultrafast dynamics of semiconductor surface[D](2018).

    [81] Keldysh L. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 20, 1307-1314(1965).

    [82] Hayazawa N, Tarun A, Taguchi A et al. Development of tip-enhanced near-field optical spectroscopy and microscopy[J]. Japanese Journal of Applied Physics, 48, 08JA02(2009).

    [83] Luo Y, Jelic V, Chen G et al. Nanoscale terahertz STM imaging of a metal surface[J]. Physical Review B, 102, 205417(2020).

    [84] Fowler R H, Nordheim L. Electron emission in intense electric fields[J]. Proceedings of the Royal Society of London, 119, 173-181(1928).

    [85] Zheltikov A M. Keldysh parameter, photoionization adiabaticity, and the tunneling time[J]. Physical Review A, 94, 043412(2016).

    [86] Cocker T L. Exploring conductivity in nanomaterials with terahertz pulses[D](2012).

    [87] Yoshioka K, Katayama I, Arashida Y et al. Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields[J]. Nano Letters, 18, 5198-5204(2018).

    [88] Yoshioka K, Katayama I, Minami Y et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields[J]. Nature Photonics, 10, 762-765(2016).

    [89] Li T, Quan B, Fang G et al. Flexible THz carrier-envelope phase shifter based on metamaterials[J]. Advanced Optical Materials, 10, 2200541(2022).

    [90] Chen C J, Smith W F. Introduction to scanning tunneling microscopy[J]. American Journal of Physics, 62, 573-574(1994).

    [91] Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 34, 1793-1803(1963).

    [92] Peller D, Roelcke C, Kastner L Z et al. Quantitative sampling of atomic-scale electromagnetic waveforms[J]. Nature Photonics, 15, 143-147(2021).

    [93] Muller M, Martin Sabanes N, Kampfrath T et al. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction[J]. ACS Photonics, 7, 2046-2055(2020).

    [94] Kimura K, Morinaga Y, Imada H et al. Terahertz-field-driven scanning tunneling luminescence spectroscopy[J]. ACS Photonics, 8, 982-987(2021).

    [95] Yoshida S, Arashida Y, Hirori H et al. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations[J]. ACS Photonics, 8, 315-323(2021).

    Hongbo Li, Jingyin Xu, Wenyin Wei, En'en Li, Kai Zhang, Hong Li, Yirong Wu, Tianwu Wang, Guangyou Fang. Progress of High Spatiotemporal Resolution Terahertz Scanning Tunneling Microscope for Near-Field Imaging[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811001
    Download Citation