• Laser & Optoelectronics Progress
  • Vol. 58, Issue 14, 1404002 (2021)
Zhenping Liu*, Rong Jiang, and Kejing Pang
Author Affiliations
  • Chongqing Vocational Institute of Safety & Technology, Chongqing 404020, China
  • show less
    DOI: 10.3788/LOP202158.1404002 Cite this Article Set citation alerts
    Zhenping Liu, Rong Jiang, Kejing Pang. Highly Sensitive Detection of Copper Ions by Reduced Glutathione Modified Gold Nanocluster Fluorescence Sensor[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1404002 Copy Citation Text show less
    References

    [1] Hepel M, Stobiecka M. Interactions of adsorbed albumin with underpotentially deposited copper on gold piezoelectrodes[J]. Bioelectrochemistry, 70, 155-164(2007).

    [2] Stobiecka M, Hepel M, Radecki J. Transient conformation changes of albumin adsorbed on gold piezoelectrodes[J]. Electrochimica Acta, 50, 4873-4887(2005).

    [3] Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress[J]. Nature Reviews Drug Discovery, 3, 205-214(2004).

    [4] Viles J H. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases[J]. Coordination Chemistry Reviews, 256, 2271-2284(2012).

    [5] Godiya C B, Cheng X, Li D W et al. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater[J]. Journal of Hazardous Materials, 364, 28-38(2019).

    [6] Liu H L, Cui S Q, Shi F et al. A diarylethene based multi-functional sensor for fluorescent detection of Cd 2+ and colorimetric detection of Cu 2+[J]. Dyes and Pigments, 161, 34-43(2019). http://www.sciencedirect.com/science/article/pii/S0143720818317340

    [7] Bakhsh E M, Khan S B, Marwani H M et al. Efficient electrochemical detection and extraction of copper ions using ZnSe-CdSe/SiO2 core-shell nanomaterial[J]. Journal of Industrial and Engineering Chemistry, 73, 118-127(2019).

    [8] Liu J W, Lu Y. A Dnazyme catalytic beacon sensor for paramagnetic Cu 2+ ions in aqueous solution with high sensitivity and selectivity[J]. Journal of the American Chemical Society, 129, 9838-9839(2007).

    [9] Malek A, Bera K, Biswas S et al. Development of a next-generation fluorescent turn-on sensor to simultaneously detect and detoxify mercury in living samples[J]. Analytical Chemistry, 91, 3533-3538(2019). http://pubs.acs.org/doi/10.1021/acs.analchem.8b05268

    [10] Liu H J, Jia L, Wang Y X et al. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters[J]. Analytical and Bioanalytical Chemistry, 411, 2531-2543(2019).

    [11] Lü F, Feng X L, Tang H W et al. Development of film sensors based on conjugated polymers for copper (II) ion detection[J]. Advanced Functional Materials, 21, 845-850(2011).

    [12] Gao W, Yang Y T, Huo F J et al. An ICT colorimetric chemosensor and a non-ICT fluorescent chemosensor for the detection copper ion[J]. Sensors and Actuators B: Chemical, 193, 294-300(2014).

    [13] Liu G H, Ren P P, Yang F et al. Two novel colorimetric probes (5-HMBA-FH and 3-HMBA-FH) based on fluorescein for copper(II) ion detection[J]. Canadian Journal of Chemistry, 96, 1037-1045(2018).

    [14] Lee S J, Lee S S, Lee J Y et al. A functionalized inorganic nanotube for the selective detection of copper(II) ion[J]. Chemistry of Materials, 18, 4713-4715(2006).

    [15] Mei L, Xiang Y, Li N et al. A new fluorescent probe of rhodamine B derivative for the detection of copper ion[J]. Talanta, 72, 1717-1722(2007).

    [16] Cao H Y, Shi W B, Xie J X et al. Highly sensitive and selective fluorescent assay for quantitative detection of divalent copper ion in environmental water samples[J]. Analytical Methods, 3, 2102-2107(2011).

    [17] Pan K B, An J, Yuan B Z et al. Preparation of new carbonized polymer dots with folic acid and detection of copper ion[J]. Materials Science Forum, 953, 160-165(2019). http://www.scientific.net/MSF.953.160

    [18] Lu C, Lin J M, Huie C W et al. Simultaneous determination of copper(II) and cobalt(II) by ion chromatography coupled with chemiluminescent detection[J]. Analytical Sciences, 19, 557-561(2003). http://www.ncbi.nlm.nih.gov/pubmed/12725391

    [19] Zheng Y, Tang H S, Wang X Y et al. Facile synthesis and properties of aqueous CdTe quantum dots for high-sensitive copper (II) ion detection[J]. Nano, 12, 1750151(2017).

    [20] Liu Y S, Zhao Y N, Zhang Y Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection[J]. Sensors and Actuators B: Chemical, 196, 647-652(2014).

    [21] Tanenbaum M E, Gilbert L A, Qi L S et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging[J]. Cell, 159, 635-646(2014).

    [22] Zhou Y, Zhang J F, Yoon J. Fluorescence and colorimetric chemosensors for fluoride-ion detection[J]. Chemical Reviews, 114, 5511-5571(2014).

    [23] Wu S J, Zhang H, Shi Z et al. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles[J]. Food Control, 50, 597-604(2015).

    [24] Wang Y, Gan N, Li T H et al. A novel aptamer-quantum dot fluorescence probe for specific detection of antibiotic residues in milk[J]. Analytical Methods, 8, 3006-3013(2016).

    [25] Sharma A K, Priya , Kaith B S et al. Enzymatic construction of quinine derivative of dextrin/PVA based hybrid gel film for the simultaneous detection and removal of copper and lead ions in real water samples[J]. Chemical Engineering Journal, 382, 122891(2020).

    [26] Chen L Y, Wang C W, Yuan Z Q et al. Fluorescent gold nanoclusters: recent advances in sensing and imaging[J]. Analytical Chemistry, 87, 216-229(2015).

    [27] Cui M L, Zhao Y, Song Q J. Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters[J]. TrAC Trends in Analytical Chemistry, 57, 73-82(2014).

    [28] Zhang Y, Li M, Niu Q Q et al. Gold nanoclusters as fluorescent sensors for selective and sensitive hydrogen sulfide detection[J]. Talanta, 171, 143-151(2017).

    [29] Qing T P, He X X, He D G et al. Oligonucleotide-templated rapid formation of fluorescent gold nanoclusters and its application for Hg 2+ ions sensing[J]. Talanta, 161, 170-176(2016). http://europepmc.org/abstract/MED/27769395

    [30] Peng T, Wang J Y, Xie S L et al. Preparation of protein hybrid fluorescence nanoclusters for rapid detection of mercury ion[J]. Chinese Journal of Analytical Chemistry, 46, 373-378(2018).

    [31] Yue Y, Liu T Y, Li H W et al. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions[J]. Nanoscale, 4, 2251-2254(2012).

    [32] Dong Z, Li Y, Xie L J et al. Synthesis of fluorescent gold nanoclusters and its applications to the determination of Hg 2+[J]. Chinese Journal of Analysis Laboratory, 35, 1398-1401(2016).

    [33] Zhao Q, Yan H, Liu P et al. An ultra-sensitive and colorimetric sensor for copper and iron based on glutathione-functionalized gold nanoclusters[J]. Analytica Chimica Acta, 948, 73-79(2016).

    [34] Selvaprakash K, Chen Y C. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes[J]. Biosensors and Bioelectronics, 92, 410-416(2017).

    [35] Lan J, Zou H Y, Wang Q et al. Sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer platform using the BSA-stabilized Au nanoclusters/amino-functionalized graphene oxide hybrids[J]. Talanta, 161, 482-488(2016).

    [36] Giustarini D, Tsikas D, Colombo G et al. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: an elephant in the room[J]. Journal of Chromatography B, 1019, 21-28(2016).

    [37] Liu Z P, Hou J Z, Wang X F et al. A novel fluorescence probe for rapid and sensitive detection of tetracyclines residues based on silicon quantum dots[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 240, 118463(2020). http://www.sciencedirect.com/science/article/pii/S1386142520304418

    [38] Luo Z, Yuan X, Yu Y et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters[J]. Journal of the American Chemical Society, 134, 16662-16670(2012). http://pubs.acs.org/doi/pdf/10.1021/ja306199p

    [39] Selvaprakash K, Chen Y C. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes[J]. Biosensors and Bioelectronics, 92, 410-416(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=94d95723ca72266002c3a9f3497e45bf

    [40] Jia J, Lin B, Gao Y F et al. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe 3+ sensing and cellular imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211, 363-372(2019). http://www.ncbi.nlm.nih.gov/pubmed/30593946

    [41] Ye H L, Cai S J, Li S et al. One-pot microwave synthesis of water-dispersible, high fluorescence silicon nanoparticles and their imaging applications in vitro and in vivo[J]. Analytical Chemistry, 88, 11631-11638(2016).

    [42] Zheng A Q, Hao Y N, Guo T T et al. Correlation of fluorescence imaging with inductively coupled plasma-mass spectrometry for quantification of intracellular copper nanoparticles[J]. Chinese Journal of Analytical Chemistry, 48, 1359-1366(2020).

    [43] Iqbal A, Tian Y J, Wang X D et al. Carbon dots prepared by solid state method via citric acid and 1, 10-phenanthroline for selective and sensing detection of Fe 2+ and Fe 3+[J]. Sensors and Actuators B: Chemical, 237, 408-415(2016).

    [44] Tang D D, Zhang J Y, Zhou R X et al. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots[J]. Nanoscale, 10, 8477-8482(2018).

    [45] Tang D D, Zhang J Y, Hou X D et al. Phosphorescent inner filter effect-based sensing system for determination of β-glucuronidase using manganese-doped zinc sulfide quantum dots[J]. Chinese Journal of Analytical Chemistry, 45, 1909-1914(2017).

    [46] Liu Y H, Duan W X, Song W et al. Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe 3+ ions in complex biological fluids and living cells[J]. ACS Applied Materials & Interfaces, 9, 12663-12672(2017).

    [47] Wang X F, Yang Y X, Huo D Q et al. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate[J]. Microchimica Acta, 187, 1-9(2020).

    [48] ANJANA R. et al. S, N-doped carbon dots as a fluorescent probe for bilirubin[J]. Mikrochimica Acta An International Journal for Physical & Chemical Methods of Analysis, 185, 11(2018).

    [49] Yang M, Yu Y, Shen F et al. Detection of copper ion with laser-induced fluorescence in a capillary electrophoresis microchip[J]. Analytical Letters, 43, 2883-2891(2010).

    [50] Zi L I, Ling M, Yu X et al. Novel colorogenic probe of rhodamine B derivative for the detection of copper ion[J]. Chinese Journal of Analytical Chemistry, 36, 915-919(2008).

    [51] Sun Y H, Qi Y X, Shen Y et al. Preparation of electrochemical sensor based on RGO-Au-ZIF-8 composite and its application in simultaneous detection of lead ions and copper ions[J]. Acta Chimica Sinica, 78, 147-154(2020).

    [52] Lin M, Cho M, Choe W S et al. Polypyrrole nanowire modified with Gly-Gly-His tripeptide for electrochemical detection of copper ion[J]. Biosensors and Bioelectronics, 26, 940-945(2010).

    [53] Peng X X, Bao G M, Zhong Y F et al. Highly selective detection of Cu 2+ in aqueous media based on Tb 3+-functionalized metal-organic framework[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 240, 118621(2020).

    Zhenping Liu, Rong Jiang, Kejing Pang. Highly Sensitive Detection of Copper Ions by Reduced Glutathione Modified Gold Nanocluster Fluorescence Sensor[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1404002
    Download Citation