• Matter and Radiation at Extremes
  • Vol. 6, Issue 4, 046901 (2021)
V. V. Ivanov1、a), A. V. Maximov2, R. Betti2、3, L. S. Leal2、3, J. D. Moody4, K. J. Swanson1, and N. A. Huerta1
Author Affiliations
  • 1Department of Physics, University of Nevada, Reno, Nevada 89557, USA
  • 2Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
  • 3Department of Physics and Astronomy, University of Rochester, Rochester, New York 14623, USA
  • 4Lawrence Livermore National Laboratory, Livermore, California 94550, USA
  • show less
    DOI: 10.1063/5.0042863 Cite this Article
    V. V. Ivanov, A. V. Maximov, R. Betti, L. S. Leal, J. D. Moody, K. J. Swanson, N. A. Huerta. Generation of strong magnetic fields for magnetized plasma experiments at the 1-MA pulsed power machine[J]. Matter and Radiation at Extremes, 2021, 6(4): 046901 Copy Citation Text show less

    Abstract

    Pulsed power technology provides a platform for investigating plasmas in strong magnetic fields using a university-scale machine. Presented here are methods for generating and measuring the 1–4-MG magnetic fields developed for the 1-MA Zebra pulsed power generator at the University of Nevada, Reno. A laser coupled with the Zebra generator produces a magnetized plasma, and experiments investigate how a megagauss magnetic field affects the two-plasmon decay and the expansion of the laser-produced plasma in both transverse and longitudinal magnetic fields.
    Δt=EatPed=16Hatρδd2dBdt,

    View in Article

    τ=(BoutBin)/dBin/dt.

    View in Article

    V. V. Ivanov, A. V. Maximov, R. Betti, L. S. Leal, J. D. Moody, K. J. Swanson, N. A. Huerta. Generation of strong magnetic fields for magnetized plasma experiments at the 1-MA pulsed power machine[J]. Matter and Radiation at Extremes, 2021, 6(4): 046901
    Download Citation