• Laser & Optoelectronics Progress
  • Vol. 57, Issue 24, 240001 (2020)
Tianyu Zhao2、3, Zhaojun Wang1, Kun Feng1, Yansheng Liang1, Minru He2、3, Xue Yun1, and Ming Lei1、3、*
Author Affiliations
  • 1School of Physics, Xi'an Jiaotong University, xi'an, Shaanxi 710049, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.240001 Cite this Article Set citation alerts
    Tianyu Zhao, Zhaojun Wang, Kun Feng, Yansheng Liang, Minru He, Xue Yun, Ming Lei. High-Speed Structured Illumination Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(24): 240001 Copy Citation Text show less
    References

    [1] Born M, Wolf E[M]. Principles of optics (7th edition), 382-391(2007).

    [3] Berthelot J. A c'imovi c' S S, Juan M L, et al. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 9, 295-299(2014).

    [4] Reimer L[M]. Transmission electron microscopy: physics of image formation and microanalysis, 1-2(2013).

    [5] Morita S, Giessibl F J, Meyer E et al[M]. Noncontact atomic force microscopy(2015).

    [6] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 78, 993-1016(2009).

    [7] Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J]. Journal of Cell Biology, 190, 165-175(2010).

    [8] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [9] Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [10] Shroff H, Galbraith C G, Galbraith J A et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 5, 417-423(2008). http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ028709676.aspx

    [11] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [12] Bates M, Huang B, Dempsey G T et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 317, 1749-1753(2007).

    [13] Huang B, Wang W, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008). http://www.sciencemag.org/content/319/5864/810.abstract

    [14] Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy[J]. Chemical Reviews, 114, 3189-3202(2014).

    [15] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [16] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. PNAS, 97, 8206-8210(2000).

    [17] Arroyo-Camejo S, Adam M P, Besbes M et al. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals[J]. ACS Nano, 7, 10912-10919(2013).

    [18] Li M Q, Li Y N, Liu W H et al. Structured illumination microscopy using digital micro-mirror device and coherent light source[J]. Applied Physics Letters, 116, 233702(2020).

    [19] Gustafsson M G L, Agard D A, Sedat J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[J]. Proceedings of SPIE, 3919, 141-150(2000).

    [20] Hirano Y, Matsuda A, Hiraoka Y. Recent advancements in structured-illumination microscopy toward live-cell imaging[J]. Microscopy, 64, 237-249(2015).

    [21] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [22] Ouyang W, Aristov A, Lelek M et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 36, 460-468(2018).

    [23] Zhang Y W, Lang S, Wang H W et al. Super-resolution algorithm based on Richardson-Lucy deconvolution for three-dimensional structured illumination microscopy[J]. Journal of the Optical Society of America A, 36, 173-178(2019).

    [24] Christiansen E M, Yang S J, Ando D M et al. In silico labeling: predicting fluorescent labels in unlabeled images[J]. Cell, 173, 792-803(2018).

    [25] Chen F, Tillberg P W, Boyden E S. Expansion microscopy[J]. Science, 347, 543-548(2015).

    [26] Zhang X, Chen X Z, Zeng Z P et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI)[J]. ACS Nano, 9, 2659-2667(2015).

    [27] Neil M A A, Juškaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope[J]. Optics Letters, 22, 1905-1907(1997).

    [28] Heintzmann R, Cremer C G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating[J]. Proceedings of SPIE, 3568, 185-196(1999).

    [29] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION[J]. Journal of Microscopy, 198, 82-87(2000).

    [30] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. PNAS, 102, 13081-13086(2005).

    [31] James B P. Handbook of biological confocal microscopy[M]. New York: Springer Science & Business Media, 1-17(2006).

    [32] Schermelleh L, Carlton P M, Haase S et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 320, 1332-1336(2008).

    [33] Kner P, Chhun B B, Griffis E R et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 6, 339-342(2009).

    [34] Müller C B, Enderlein J. Image scanning microscopy[J]. Physical Review Letters, 104, 198101(2010).

    [35] Shao L, Kner P, Rego E H et al. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 8, 1044-1046(2011).

    [36] Fiolka R, Shao L, Rego E H et al. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination[J]. PNAS, 109, 5311-5315(2012).

    [37] Brunstein M, Wicker K, Hérault K et al. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks[J]. Optics Express, 21, 26162-26173(2013).

    [38] Förster R. Lu-Walther H W, Jost A, et al. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator[J]. Optics Express, 22, 20663-20677(2014).

    [39] Li D, Shao L, Chen B C, cytoskeletal dynamics[J]. Science et al. 349(6251): aab3500(2015).

    [40] Müller M, Mönkemöller V, Hennig S et al. Open-source image reconstruction of super-resolution structured illumination microscopy data in Image[J]. Nature Communications, 7, 10980(2016).

    [41] Demmerle J, Innocent C, North A J et al. Strategic and practical guidelines for successful structured illumination microscopy[J]. Nature Protocols, 12, 988-1010(2017).

    [42] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).

    [43] Zhanghao K, Chen X Y, Liu W H et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy[J]. Nature Communications, 10, 4694(2019).

    [44] Masters B R[M]. Structured illumination microscopy, 233-260(2020).

    [45] Shroff S A, Fienup J R, Williams D R. Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results[J]. Journal of the Optical Society of America A, 27, 1770-1782(2010).

    [46] Richter V, Piper M, Wagner M et al. Increasing resolution in live cell microscopy by structured illumination (SIM)[J]. Applied Sciences, 9, 1188-1210(2019).

    [47] Lal A, Shan C Y, Xi P. Structured illumination microscopy image reconstruction algorithm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 50-63(2016).

    [48] Qian J, Dang S P, Zhou X et al. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform[J]. Acta Physica Sinica, 69, 128701(2020).

    [49] Dan D, Lei M, Yao B L et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. scientific Reports, 3, 1116(2013).

    [50] Qian J, Dang S P, Wang Z J et al. Large-scale 3D imaging of insects with natural color[J]. Optics Express, 27, 4845-4857(2019).

    [51] Chen Y H, Cao R Z, Liu W J et al. Widefield and total internal reflection fluorescent structured illumination microscopy with scanning galvo mirrors[J]. Journal of Biomedical Optics, 23, 1-9(2018).

    [52] Liu W J, Liu Q L, Zhang Z M et al. Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy[J]. Optics Express, 27, 7237-7248(2019).

    [53] Fiolka R, Beck M, Stemmer A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator[J]. Optics Letters, 33, 16291631(2008).

    [54] Wicker K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space[J]. Optics Express, 21, 24692-24701(2013).

    [55] Chang B J, Chou L J, Chang Y C et al. Isotropic image in structured illumination microscopy patterned with a spatial light modulator[J]. Optics Express, 17, 14710-14721(2009).

    [56] Lu-Walther H W, Kielhorn M, Förster R et al. FastSIM: a practical implementation of fast structured illumination microscopy[J]. Methods and Applications in Fluorescence, 3, 014001(2015).

    [57] Descloux A, Müller M, Navikas V et al. High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism[J]. Nanophotonics, 9, 143-148(2019).

    [58] Suzuki T, Kajimoto S, Kitamura N et al. A millisecond structured illumination microscope for super-resolution live cell imaging[J]. Applied Physics Express, 13, 045002(2020).

    [59] Martínez-García A, Moreno I. Sánchez-López M M, et al. Operational modes of a ferroelectric LCoS modulator for displaying binary polarization, amplitude, and phase diffraction gratings[J]. Applied Optics, 48, 2903-2914(2009).

    [60] O'Holleran K, Shaw M. Polarization effects on contrast in structured illumination microscopy[J]. Optics Letters, 37, 4603-4605(2012).

    [61] Zhao T Y, Zhou X, Dan D et al. Polarization control methods in structured illumination microscopy[J]. Acta Physica Sinica, 66, 148704(2017).

    [62] Guo Y T, Li D, Zhang S W et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 175, 1430-1442(2018).

    [63] Shroff S A, Fienup J R, Williams D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J]. Journal of the Optical Society of America A, 26, 413-424(2009).

    [64] Wicker K, Mandula O, Best G et al. Phase optimisation for structured illumination microscopy[J]. Optics Express, 21, 2032-2049(2013).

    [65] Zhou X, Lei M, Dan D et al. Image recombination transform algorithm for superresolution structured illumination microscopy[J]. Journal of Biomedical Optics, 21, 096009(2016).

    [66] Chakrova N, Rieger B, Stallinga S. Deconvolution methods for structured illumination microscopy[J]. Journal of the Optical Society of America A, 33, B12-B20(2016).

    [67] Verveer P J, Gemkow M J, Jovin T M. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy[J]. Journal of Microscopy, 193, 50-61(1999).

    [68] Sarder P, Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images[J]. IEEE Signal Processing Magazine, 23, 32-45(2006).

    [69] Wallace W, Schaefer L H, Swedlow J R. A workingperson's guide to deconvolution in light microscopy[J]. BioTechniques, 31, 1076-1097(2001).

    [70] Gustafsson M G L, Shao L, Carlton P M et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 94, 4957-4970(2008).

    [71] Perez V, Chang B J. Stelzer E H K. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution[J]. Scientific Reports, 6, 37149-37150(2016).

    [72] Chu K Q. McMillan P J, Smith Z J, et al. Image reconstruction for structured-illumination microscopy with low signal level[J]. Optics Express, 22, 8687-8702(2014).

    [73] Song L Y. Lu-Walther H W, Förster R, et al. Fast structured illumination microscopy using rolling shutter cameras[J]. Measurement Science and Technology, 27, 055401(2016).

    [74] Markwirth A, Lachetta M, Mönkemöller V et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction[J]. Nature Communications, 10, 4315(2019).

    [75] Turcotte R, Liang Y J, Tanimoto M et al. Dynamic super-resolution structured illumination imaging in the living brain[J]. PNAS, 116, 9586-9591(2019).

    [76] Vavrdová T, Šamajová O. K r˙enek P, et al. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins[J]. Plant Methods, 15, 22-33(2019).

    [77] Kashiwagi Y, Higashi T, Obashi K et al. Computational geometry analysis of dendritic spines by structured illumination microscopy[J]. Nature Communications, 10, 1285(2019).

    [78] Phillips J K, Sherman S A, Cotton K Y et al. Characterization of neurite dystrophy after trauma by high speed structured illumination microscopy and lattice light sheet microscopy[J]. Journal of Neuroscience Methods, 312, 154-161(2019).

    [79] Fumagalli S, Fiordaliso F, Perego C et al. The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy[J]. Journal of Neuroinflammation, 16, 9(2019). http://link.springer.com/article/10.1186/s12974-019-1401-z

    [80] Bonin K, Smelser A, Salvador Moreno N et al. Structured illumination reveals reduced chromatin cohesion in cells with DNA damage[J]. Biophysical Journal, 116, 283-290(2019).

    [81] Chen Q X, Shao X T, Hao M G et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy[J]. Biomaterials, 250, 120059(2020).

    [82] Shao X T, Chen Q X, Ling P X et al. Drug screening and discovery strategies at nanoscale morphology using structured illumination microscopy[J]. Biophysical Journal, 116, 267a(2019).

    [84] Nikon. N-SIM S[EB/OL]. -01-22)[2020-08-04](2020). https://www.nikon.com/products/microscope-solutions/lineup/s-resolution/nsim/.

    [85] GE. Super resolution microscopy[EB/OL]. -02-29)[2020-08-04](2020). https://www.cytivalifesciences.com/en/us/solutions/cellular-analysis/products-and-technology/microscopy/super-resolution.

    [86] Zhang C H, Zhao Z W, Chen L Y et al. Application of adaptive optics in biological fluorescent microscopy[J]. Scientia Sinica (Physica,Mechanica & Astronomica), 47, 26-39(2017).

    [87] Débarre D, Botcherby E J, Booth M J et al. Adaptive optics for structured illumination microscopy[J]. Optics Express, 16, 9290-9305(2008).

    [88] Zheng W, Wu Y C, Winter P et al. Adaptive optics improves multiphoton super-resolution imaging[J]. Nature Methods, 14, 869-872(2017).

    [89] Chang B J, Tang W C, Liu Y T et al. Two-beam interference lattice lightsheet for structured illumination microscopy[J]. Journal of Physics D: Applied Physics, 53, 044005(2020).

    [90] Liu Y, Dale S, Ball R et al. Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy[J]. Neurophotonics, 6, 015009(2019). http://www.ncbi.nlm.nih.gov/pubmed/30854407

    [91] Schaefer L H, Schuster D, Schaffer J. Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach[J]. Journal of Microscopy, 216, 165-174(2004).

    [92] Heintzmann R. Saturated patterned excitation microscopy with two-dimensional excitation patterns[J]. Micron, 34, 283-291(2003).

    [93] Meng F F, Du L P, Yang A P et al. Low-loss metal-dielectric waveguide mode enabled structured illumination microscopy with 018λ0 resolution[J]. Optics Express, 27, 9250-9257(2019). http://www.researchgate.net/publication/331797070_Low-loss_metal-dielectric_waveguide_mode_enabled_structured_illumination_microscopy_with_018l_0_resolution

    [94] Dang D, Zhang H, Xu Y et al. Super-resolution visualization of self-assembling helical fibers using aggregation-induced emission luminogens in stimulated emission depletion nanoscopy[J]. ACS Nano, 13, 11863-11873(2019).

    [95] Wang H D, Rivenson Y, Jin Y Y et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 16, 103-110(2019).

    Tianyu Zhao, Zhaojun Wang, Kun Feng, Yansheng Liang, Minru He, Xue Yun, Ming Lei. High-Speed Structured Illumination Microscopy and Its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(24): 240001
    Download Citation