• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 2, 1430002 (2014)
He N. Xu* and Lin Z. Li
Author Affiliations
  • Department of Radiology Britton Chance Laboratory of Redox Imaging Johnson Research Foundation, Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
  • show less
    DOI: 10.1142/s179354581430002x Cite this Article
    He N. Xu, Lin Z. Li. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity¤[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1430002 Copy Citation Text show less
    References

    [1] Q. Zhang, S. Y. Wang, A. C. Nottke, J. V. Rocheleau, D. W. Piston, R. H. Goodman, "Redox sensor CtBP mediates hypoxia-induced tumor cell migration," Proc. Natl. Acad. Sci. USA 103, 9029– 9033 (2006).

    [2] K. Eto, Y. Tsubamoto, Y. Terauchi, T. Sugiyama, T. Kishimoto, N. Takahashi, N. Yamauchi, N. Kubota, S. Murayama, T. Aizawa, Y. Akanuma, S. Aizawa, H. Kasai, Y. Yazaki, T. Kadowaki, "Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion," Science 283, 981–985 (1999).

    [3] R. Dumollard, Z. Ward, J. Carroll, M. R. Duchen, "Regulation of redox metabolism in the mouse oocyte and embryo," Development 134, 455–465 (2007).

    [4] S. Chen, J. R. Whetstine, S. Ghosh, J. A. Hanover, R. R. Gali, P. Grosu, Y. Shi, "The conserved NAD (H)-dependent corepressor CTBP-1 regulates Caenorhabditis elegans life span," Proc. Natl. Acad. Sci. USA 106, 1496–1501 (2009).

    [5] O. Warburg, W. Christian, "Pyridin, the hydrogen- transferring component of the fermentation enzymes (pyridine nucleotide)," Biochemische Zeitschrift 287, 291 (1936).

    [6] O. H. Warburg, "Wasserstoff€ubertragende Fermente," Verlag Werner S nger, Berlin (1948).

    [7] B. Chance, G. R. Williams, W. F. Holmes, J. Higgins, "Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation," J. Biol. Chem. 217, 439–451 (1955).

    [8] B. Chance, G. R. Williams, "Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization," J. Biol. Chem. 217, 383–393 (1955).

    [9] B. Chance, G. R. Williams, "Respiratory enzymes in oxidative phosphorylation. II. Difference spectra," J. Biol. Chem. 217, 395–407 (1955).

    [10] B. Chance, G. R. Williams, "Respiratory enzymes in oxidative phosphorylation. III. The steady state," J. Biological Chemistry 217, 409–427 (1955).

    [11] B. Chance, G. R. Williams, "Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain," J. Biol. Chem. 217, 429–438 (1955).

    [12] L. N. Duysens, J. Amesz, "Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region," Biochim. Biophys. Acta 24, 19–26 (1957).

    [13] B. Chance, H. Baltscheffsky, "Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide," J. Biol. Chem. 233, 736–739 (1958).

    [14] B. Chance, P. Cohen, F. Jobsis, B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499–508 (1962).

    [15] A. Mayevsky, G. G. Rogatsky, "Mitochondrial function in vivo evaluated by NADH fluorescence: From animal models to human studies," Am. J. Physiol. Cell Physiol. 292, C615–640 (2007).

    [16] O. Warburg, W. Christian, Biochem. Z. 298, 150 (1938).

    [17] O. Warburg, W. Christian, Naturwissenschaften 20, 688 (1932).

    [18] O. Warburg, W. Christian, Naturwissenschaften 20, 980 (1932).

    [19] B. Chance, B. Schoener, "Fluorometric studies of flavin component of the respiratory chain," Flavins and Flavoproteins, E. C. Slater Ed., pp. 510–519, Elsevier, Amsterdam (1966).

    [20] B. Chance, L. Ernster, P. B. Garland, C. P. Lee, P. A. Light, T. Ohnishi, C. I. Ragan, D. Wong, "Flavoproteins of the mitochondrial respiratory chain," Proc. Natl. Acad. Sci. USA 57, 1498–505 (1967).

    [21] I. Hassinen, B. Chance, "Oxidation-reduction properties of the mitochondrial flavoprotein chain," Biochem. Biophys. Res. Commun. 31, 895– 900 (1968).

    [22] P. B. Garland, B. Chance, L. Ernster, C. P. Lee, D. Wong, "Flavoproteins of mitochondrial fatty acid oxidation," Proc. Natl. Acad. Sci. USA 58, 1696– 702 (1967).

    [23] C. I. Ragan, P. B. Garland, "The intra-mitochondrial localization of flavoproteins previously assigned to the respiratory chain," Eur. J. Biochem. 10, 399–410 (1969).

    [24] W. S. Kunz, "Spectral properties of fluorescent flavoproteins of isolated rat liver mitochondria," FEBS Lett. 195, 92–96 (1986).

    [25] W. S. Kunz, "Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation," Biochim. Biophys. Acta 932, 8–16 (1988).

    [26] W. S. Kunz, W. Kunz, "Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria," Biochim. Biophys. Acta 841, 237–246 (1985).

    [27] L. Z. Li, H. N. Xu, M. Ranji, S. Nioka, B. Chance, "Mitochondrial redox imaging for cancer diagnostic and therapeutic studies," J. Innov. Opt. Health Sci. 2, 325–341 (2009).

    [28] A. A. Heikal, "Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies," Biomark. Med. 4, 241–263 (2010).

    [29] B. Chance, B. Thorell, "Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry," J. Biol. Chem. 234, 3044–3050 (1959).

    [30] K. Blinova, R. L. Levine, E. S. Boja, G. L. Griffiths, Z. D. Shi, B. Ruddy, R. S. Balaban, "Mitochondrial NADH fluorescence is enhanced by Complex I binding," Biochemistry 47, 9636–9645 (2008).

    [31] A. Mayevsky, "Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations," Brain Res. 113, 327–338 (1976).

    [32] Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, B. Chance, "High-resolution threedimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue," Rev. Sci. Instrum. 73, 172–178 (2002).

    [33] B. Quistorff, J. C. Haselgrove, B. Chance, "High spatial resolution readout of 3-D metabolic organ structure: An automated, low-temperature redox ratio-scanning instrument," Anal. Biochem. 148, 389–400 (1985).

    [34] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764–4771 (1979).

    [35] K. Ozawa, B. Chance, A. Tanaka, S. Iwata, T. Kitai, I. Ikai, "Linear correlation between acetoacetate/ beta-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in freeze-trapped human liver tissue," Biochim. Biophys. Acta. 1138, 350–352 (1992).

    [36] T. Kitai, A. Tanaka, A. Tokuka, K. Ozawa, S. Iwata, B. Chance, "Changes in the redox distribution of rat liver by ischemia," Anal. Biochem. 206, 131–136 (1992).

    [37] L. Z. Li, R. Zhou, T. Zhong, L. Moon, E. J. Kim, H. Qiao, S. Pickup, M. J. Hendrix, D. Leeper, B. Chance, J. D. Glickson, "Predicting melanoma metastatic potential by optical and magnetic resonance imaging," Adv. Exp. Med. Biol. 599, 67–78 (2007).

    [38] B. Sato, A. Tanaka, S. Mori, N. Yanabu, T. Kitai, A. Tokuka, T. Inomoto, S. Iwata, Y. Yamaoka, B. Chance, "Quantitative-analysis of redox gradient within the rat-liver acini by fluorescence images — Effects of glucagon perfusion," Biochimica Et Biophysica Acta — Molecular Cell Res. 1268, 20– 26 (1995).

    [39] B. Chance, C. Barlow, Y. Nakase, H. Takeda, A. Mayevsky, R. Fischetti, N. Graham, J. Sorge, "Heterogeneity of oxygen delivery in normoxic and hypoxic states: A fluorometer study," Am. J. Physiol. — Heart Circulatory Physiol. 235, H809– H820 (1978).

    [40] C. H. Barlow, W. R. Harden, 3rd, A. H. Harken, M. B. Simson, J. C. Haselgrove, B. Chance, M. O'Connor, G. Austin, "Fluorescence mapping of mitochrondrial redox changes in heart and brain," Crit. Care Med. 7, 402–406 (1979).

    [41] A. Mayevsky, N. Zarchin, H. Kaplan, J. Haveri, J. Haselgroove, B. Chance, "Brain metabolic responses to ischemia in the Mongolian Gerbil — In vivo and freeze trapped redox scanning," Brain Res. 276, 95–107 (1983).

    [42] A. Shiino, M. Haida, B. Beauvoit, B. Chance, "Three-dimensional redox image of the normal gerbil brain," Neuroscience 91, 1581–1585 (1999).

    [43] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, "In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia," Proc. Natl. Acad. Sci. USA 104, 19494– 19499 (2007).

    [44] L. Z. Li, R. Zhou, H. N. Xu, L. Moon, T. Zhong, E. J. Kim, H. Qiao, R. Reddy, D. Leeper, B. Chance, J. D. Glickson, "Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential," Proc. Natl. Acad. Sci. USA 106, 6608–6613 (2009).

    [45] H. N. Xu, M. Feng, L. Moon, N. Dolloff, W. El- Deiry, L. Z. Li, "Redox imaging of the p53-dependent mitochondrial redox state in colon cancer ex vivo," J. Innov. Opt. Health Sci. 6, 1350016 (2013).

    [46] H. N. Xu, S. Nioka, B. Chance, L. Z. Li, "Heterogeneity of mitochondrial redox state in premalignant pancreas in a PTEN null transgenic mouse model," Adv. Exp. Med. Biol. 701, 207–213 (2011).

    [47] H. N. Xu, S. Nioka, J. D. Glickson, B. Chance, L. Z. Li, "Quantitative mitochondrial redox imaging of breast cancer metastatic potential," J. Biomed. Opt. 15, 036010 (2010).

    [48] N. Ramanujam, R. Richards-Kortum, S. Thomsen, A. Mahadevan-Jansen, M. Follen, B. Chance, "Low temperature fluorescence imaging of freeze-trapped human cervical tissues," Opt. Express 8, 335–343 (2001).

    [49] S. Huang, A. A. Heikal, W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811–2825 (2002).

    [50] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, "Quantitative redox scanning of tissue samples using a calibration procedure," J. Innov. Opt. Health Sci., 2, 375–385 (2009).

    [51] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, "Calibration of redox scanning for tissue samples," Opt. Tomograp. Spectros. Tissue VIII, Proc. SPIE, 7174, 71742F1-8 (2009).

    [52] A. Yaromina, V. Quennet, D. Zips, S. Meyer, G. Shakirin, S. Walenta, W. Mueller-Klieser, M. Baumann, "Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts," Int. J. Radiat. Biol. 85, 972–980 (2009).

    [53] H. N. Xu, G. Zheng, J. Tchou, S. Nioka, L. Z. Li, "Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging," SpringerPlus 2, 73 (2013).

    [54] H. N. Xu, S. Nioka, B. Chance, L. Z. Li, "3-D highresolution mapping of the heterogeneity in mitochondrial redox state of human breast tumor xenografts," Adv. Exp. Med. Biol. 737, 169–174 (2012).

    [55] K. Cai, H. N. Xu, A. Singh, M. Haris, R. Reddy, L. Z. Li, "Characterizing prostate tumor mouse xenografts with CEST & MT MRI and redox scanning," Adv. Exp. Med. Biol. 765, 39–45 (2012).

    [56] H.N.Xu, J. Tchou, B. Chance,L. Z.Li, "Imaging the redox states of human breast cancer core biopsies," Adv. Exp. Med. Biol. 765, 343–349 (2013).

    [57] H. N. Xu, J. Tchou, L. Z. Li, "Redox imaging of human breast cancer core biopsies: A preliminary investigation," Acad. Radiol. 20, 764–768 (2013).

    [58] H. N. Xu, S. Nioka, L. Z. Li, "Imaging heterogeneity in the mitochondrial redox state of premalignant pancreas in the pancreas-specific PTENnull transgenic mouse model," Biomarker Res. 1, 6 (2013).

    [59] R. A. Cairns, I. S. Harris, T. W. Mak, "Regulation of cancer cell metabolism," Nat. Rev. Cancer 11, 85–95 (2011).

    [60] W. H. Koppenol, P. L. Bounds, C. V. Dang, "Otto Warburg's contributions to current concepts of cancer metabolism," Nat. Rev. Cancer 11, 325–337 (2011).

    [61] P. S. Ward, C. B. Thompson, "Metabolic reprogramming: A cancer hallmark even warburg did not anticipate," Cancer Cell 21, 297–308 (2012).

    [62] H. N. Xu, R. Zhou, S. Nioka, B. Chance, J. D. Glickson, L. Z. Li, "Histological basis of MR/ optical imaging of human melanoma mouse xenografts spanning a range of metastatic potentials," Adv. Exp. Med. Biol. 645, 247–253 (2009).

    [63] B. Chance, L. N. Castor, "Some patterns of the respiratory pigments of ascites tumors of mice," Science 116, 200–202 (1952).

    [64] O. Warburg, "On the origin of cancer cells," Science 123, 309–314 (1956).

    [65] J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, N. Ramanujam, "Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status," Cancer Res. 70, 4759–4766 (2010).

    [66] M. Ranji, S. Nioka, H. N. Xu, B. Wu, L. Z. Li, D. L. Jaggard, B. Chance, "Fluorescent images of mitochondrial redox states in in situ mouse hypoxic ischemic intestines," J. Innov. Opt. Health Sci. 02, 365–374 (2009).

    [67] V. L. Kinnula, I. Hassinen, "Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Nat-KtT-stimulated ATP-ase in rat liver," Acta Physiol. Scand. 104, 109–116 (1978).

    [68] R. Moreno-Sanchez, S. Rodriguez-Enriquez, A. Marin-Hernandez, E. Saavedra, "Energy metabolism in tumor cells," FEBS J. 274, 1393–1418 (2007).

    [69] S. Loges, M. Mazzone, P. Hohensinner, P. Carmeliet, "Silencing or fueling metastasis with VEGF inhibitors: Antiangiogenesis revisited," Cancer Cell 15, 167–170 (2009).

    [70] X. H. Ma, S. Piao, D. Wang, Q. W. McAfee, K. L. Nathanson, J. J. Lum, L. Z. Li, R. K. Amaravadi, "Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma," Clin. Cancer Res. 17, 3478–3489 (2011).

    [71] F. Kallinowski, P. Vaupel, S. Runkel, G. Berg, H. P. Fortmeyer, K. H. Baessler, K. Wagner, W. Mueller-Klieser, S. Walenta, "Glucose uptake, lactate release, ketone body turnover, metabolic micromilieu, and pH distributions in human breast cancer xenografts in nude rats," Cancer Res. 48, 7264–7272 (1988).

    [72] J. L. Dearling, A. A. Flynn, J. Sutcliffe-Goulden, I. A. Petrie, R. Boden, A. J. Green, G. M. Boxer, R. H. Begent, R. B. Pedley, "Analysis of the regional uptake of radiolabeled deoxyglucose analogs in human tumor xenografts," J. Nucl. Med. 45, 101– 107 (2004).

    [73] H. N. Xu, G. Zheng, S. Nioka, B. Chance, L. Z. Li, "High-resolution simultaneous mapping of mitochondrial redox state and glucose uptake in human breast tumor xenografts," Adv. Exp. Med. Biol. 737, 175–179 (2012).

    [74] K. Ishikawa, N. Koshikawa, K. Takenaga, K. Nakada, J. Hayashi, "Reversible regulation of metastasis by ROS-generating mtDNA mutations," Mitochondrion 8, 339–344 (2008).

    [75] L. Z. Li, "Imaging mitochondrial redox potential and its possible link to tumor metastatic potential," J. Bioenerg. Biomembr. 44, 645–653 (2012).

    [76] J. Fields, J. J. Hanisch, J. W. Choi, P. M. Hwang, "How does p53 regulate mitochondrial respiration ," IUBMB Life 59, 682–684 (2007).

    [77] S. Matoba, J. G. Kang, W. D. Patino, A. Wragg, M. Boehm, O. Gavrilova, P. J. Hurley, F. Bunz, P. M. Hwang, "p53 Regulates mitochondrial respiration," Science 312, 1650–1653 (2006).

    [78] E. Gottlieb, K. H. Vousden, "p53 regulation of metabolic pathways," Cold Spring Harbor Perspectives Biol. 2, a001040 (2010).

    [79] D. C. Wallace, "Mitochondria and cancer," Nat. Rev. Cancer 12, 685–698 (2012).

    [80] N. Mori, R. Delsite, K. Natarajan, M. Kulawiec, Z. M. Bhujwalla, K. K. Singh, "Loss of p53 function in colon cancer cells results in increased phosphocholine and total choline," Mol Imaging 3, 319– 323 (2004).

    [81] S. Schwitalla, P. K. Ziegler, D. Horst, V. Becker, I. Kerle, Y. Begus-Nahrmann, A. Lechel, K. L. Rudolph, R. Langer, J. Slotta-Huspenina, F. G. Bader, O. Prazeres da Costa, M. F. Neurath, A. Meining, T. Kirchner, F. R. Greten, "Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors," Cancer Cell 23, 93–106 (2013).

    [82] A. Rajput, I. Dominguez San Martin, R. Rose, A. Beko, C. Levea, E. Sharratt, R. Mazurchuk, R. M. Hoffman, M. G. Brattain, J. Wang, "Characterization of HCT116 human colon cancer cells in an orthotopic model," J. Surg. Res. 147, 276–281 (2008).

    [83] S. Wang, A. Mintz, K. Mochizuki, J. F. Dorsey, J. M. Ackermann, A. Alavi, W. S. El-Deiry, "Multimodality optical imaging and 18F-FDG uptake in wild-type p53-containing and p53-null human colon tumor xenografts," Cancer Biol. Ther. 6, 1649–1653 (2007).

    [84] X. Yan, H. Shen, H. Jiang, C. Zhang, D. Hu, J. Wang, X. Wu, "External Qi of Yan Xin Qigong differentially regulates the Akt and extracellular signal-regulated kinase pathways and is cytotoxic to cancer cells but not to normal cells," Int. J. Biochem. Cell Biol. 38, 2102–2113 (2006).

    [85] T. Asano, Y. Yao, J. Zhu, D. Li, J. L. Abbruzzese, S. A. Reddy, "The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells," Oncogene 23, 8571–8580 (2004).

    [86] S. Walenta, T. Schroeder, W. Mueller-Klieser, "Metabolic mapping with bioluminescence: Basic and clinical relevance," Biomol. Eng. 18, 249–262 (2002).

    [87] H. N. Xu, T. A. Mir, S. C. Lee, M. Feng, N. Farhad, R. Choe, J. D. Glickson, L. Z. Li, "Mapping the redox state of CHOP-treated non- Hodgkin's lymphoma xenografts in mice," Adv. Exp. Med. Biol. 789, 243–249 (2013).

    [88] H. N. Xu, H. Zhao, T. A. Mir, S. C. Lee, M. Feng, R. Choe, J. D. Glickson, L. Z. Li, "Chop therapy induced mitochondrial redox state alteration in non-hodgkin's lymphoma xenografts," J. Innov. Opt. Health Sci. 6, 1350011 (2013).

    [89] H. N. Xu, R. C. Addis, D. F. Goings, S. Nioka, B. Chance, J. D. Gearhart, L. Z. Li, "Imaging redox state heterogeneity within individual embryonic stem cell colonies," J. Innov. Opt. Health Sci. 04, 279–288 (2011).

    [90] J. C. St. John, J. Ramalho-Santos, H. L. Gray, P. Petrosko, V. Y. Rawe, C. S. Navara, C. R. Simerly, G. P. Schatten, "The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells," Cloning Stem Cells 7, 141– 153 (2005).

    [91] S. Varum, O. Momcilovic, C. Castro, A. Ben- Yehudah, J. Ramalho-Santos, C. S. Navara, "Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain," Stem Cell Res. 3, 142–156 (2009).

    [92] S. Walenta, M. Wetterling, M. Lehrke, G. Schwickert, K. Sundfor, E. K. Rofstad, W. Mueller- Klieser, "High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers," Cancer Res. 60, 916–921 (2000).

    [93] S. Walenta, A. Salameh, H. Lyng, J. F. Evensen, M. Mitze, E. K. Rofstad, W. Mueller-Klieser, "Correlation of high lactate levels in head and neck tumors with incidence of metastasis," Am. J. Pathol. 150, 409–415 (1997).

    [94] G. Schwickert, S. Walenta, K. Sundfor, E. K. Rofstad, W. Mueller-Klieser, "Correlation of high lactate levels in human cervical cancer with incidence of metastasis," Cancer Res. 55, 4757–4759 (1995).

    [95] R. Hussien, G. A. Brooks, "Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines," Physiol. Genomics 43, 255–264 (2011).

    [96] O. E. Aboagye, M. Z. Bhujwalla, "Characterization of lactate levels in normal and malignant human mammary epithelial cells," Proc. Intl. Soc. Mag. Reson. Med. (1999).

    [97] S. Annarao, S. Thakur, "Quantification of lactate concentrations in orthotopic breast tumors with different growth rates," Proc. Intl. Soc. Mag. Reson. Med. (2012).

    [98] H. N. Xu, S. Kadlececk, H. Profka, B. Pullinger, J. D. Glickson, R. Rizi, L. Z. Li, "Is higher lactate generation rate an indicator of tumor metastatic risk -A pilot study using hyperpolarized 13CNMR," Proc. Intl. Soc. Mag. Reson. Med. (2013).

    [99] G. Weber, M. Stubbs, H. P. Morris, "Metabolism of hepatomas of different growth rates in situ and during ischemia," Cancer Res. 31, 2177–2183 (1971).

    [100] T. Jung, A. Hohn, T. Grune, "Lipofuscin: Detection and quantification by microscopic techniques," Meth. Mol. Biol. 594, 173–193 (2010).

    [101] D. Z. Yin, U. T. Brunk, "Microfluorometric and fluorometric lipofuscin spectral discrepancies: A concentration-dependent metachromatic effect ," Mech. Ageing Dev. 59, 95–109 (1991).

    [102] L. Z. Li, H. N. Xu, S. Kadlececk, K. Nath, K. Cai, H. Hariharan, J. D. Glickson, R. Rizi, "Non-invasive quantification of intracellular redox state in tissue by hyperpolarized 13C-NMR," Proc. Intl. Soc. Mag. Reson. Med. (2012).

    [103] K. Cai, H. N. Xu, M. Haris, A. Singh, R. Reddy, L. Z. Li, "CEST MRI as a potential imaging biomarker of mitochondrial metabolic state of breast cancer," Proc. Intl. Soc. Mag. Reson. Med. (2012).

    [104] A. Freund, C. Chauveau, J. P. Brouillet, A. Lucas, M. Lacroix, A. Licznar, F. Vignon and G. Lazennec, "IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells", Oncogene 22: 256–265 (2003).

    He N. Xu, Lin Z. Li. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity¤[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1430002
    Download Citation