[1] Quirk M, Serda J. Semiconductor manufacturing technology[M]. New Jersey: Prentice Hall, 367-412(2001).
[3] Kojima Y, Moniwa A, Maruyama T et al. Novel OPC flow for the trim-mask lithography[J]. Proceedings of SPIE, 8441, 84410I(2012).
[4] Vallishayee R R, Orszag S A, Barouch E. Optimization of stepper parameters and their influence on OPC[J]. Proceedings of SPIE, 2726, 660-669(1996).
[5] Chang C H, Schacht J. Lin B S M, et al. Specification of the phase angle of a 6% attenuated PSM mask used in ArF lithography[J]. Proceedings of SPIE, 5377, 902-910(2004).
[6] BurkhardtM, YenA, ProglerC, et al., 1998, 41/42: 91- 95.
[7] Li J L, Melvin L S. Sub-resolution assist features in photolithography process simulation[C]//2007 Digest of papers Microprocesses and Nanotechnology, November 5-8, 2007, Kyoto, Japan., 394-395(2007).
[8] Socha R, Shi X L. LeHoty D. Simultaneous source mask optimization (SMO)[J]. Proceedings of SPIE, 5853, 180-193(2005).
[9] Yu J C, Yu P C. Gradient-based fast source mask optimization (SMO)[J]. Proceedings of SPIE, 7973, 797320(2011).
[10] Rosenbluth A E, Seong N. Global optimization of the illumination distribution to maximize integrated process window[J]. Proceedings of SPIE, 6154, 61540H(2006).
[11] Lai K, Rosenbluth A E, Bagheri S et al. Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process[J]. Proceedings of SPIE, 7274, 72740A(2009).
[12] Melville D, Rosenbluth A E, Tian K H et al. Demonstrating the benefits of source-mask optimization and enabling technologies through experiment and simulations[J]. Proceedings of SPIE, 7640, 764006(2010).
[13] Zhang D Q, Chua G S, Foong Y M et al. Source mask optimization methodology (SMO) and application to real full chip optical proximity correction[J]. Proceedings of SPIE, 8326, 83261V(2012).
[14] Pei J, Shao F. ElSewefy O, et al. Compatibility of optimized source over design changes in the foundry environment[J]. Proceedings of SPIE, 8683, 86831M(2013).
[15] Tian K H, Fakhry M, Dave A et al. Applicability of global source mask optimization to 22/20 nm node and beyond[J]. Proceedings of SPIE, 7973, 79730C(2011).
[16] Rosenbluth A E, Bukofsky S J, Hibbs M S et al. Optimum mask and source patterns to print a given shape[J]. Proceedings of SPIE, 4346, 486-502(2001).
[17] Progler C, Conley W, Socha B et al. Layout and source dependent transmission tuning[J]. Proceedings of SPIE, 5754, 315-326(2005).
[18] Tsai M C, Hsu S, Chen L Q et al. Full-chip source and mask optimization[J]. Proceedings of SPIE, 7973, 79730A(2011).
[19] Socha R. Freeform and SMO[J]. Proceedings of SPIE, 7973, 797305(2011).
[20] Liao L F, Li S K, Wang X Z et al. Critical pattern selection method for full-chip source and mask optimization[J]. Optics Express, 28, 20748-20763(2020).
[21] Liao L F, Li S K, Wang X Z et al. Critical pattern selection based on diffraction spectrum analysis for full-chip source mask optimization[J]. Acta Optica Sinica, 40, 2122001(2020).
[22] Wong A K. Optical imaging in projection microlithography[M]. Bellingham: SPIE(2005).