• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 10901 (2018)
Liu Chao, Gui Jinbin*, Li Junchang, Song Qinghe, Lou Yuli, and Liu Zhiqiang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.010901 Cite this Article Set citation alerts
    Liu Chao, Gui Jinbin, Li Junchang, Song Qinghe, Lou Yuli, Liu Zhiqiang. Fast Generation Algorithm of Computer-Generated Hologram Based on Triangular Surface Light Source Frequency Spectrum Analytic Solutions[J]. Laser & Optoelectronics Progress, 2018, 55(1): 10901 Copy Citation Text show less
    References

    [1] Yamaguchi K, Sakamoto Y. Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images[J]. Applied Optics, 2009,48(34): H203-H211.

    [2] Kim H, Hahm J, Lee B. Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography[J]. Applied Optics, 2008, 47(19): D117-D127.

    [3] Ahrenberg L, Benzie P, Magnor M. Computer generated holograms from three dimensional meshes using an analytic light transport model[J]. Applied Optics, 2008, 47(10): 1567-1574.

    [4] Huebschman M, Munjuluri B, Garner H. Dynamic holographic 3-D image projection[J]. Optics Express, 2003, 11(5): 437-445.

    [5] Sato K, Sugita A, Morimoto M, et al. Reconstruction of full-color images with a RGB time-sharing holographic display system[C]. SPIE, 2006, 6030: 603004.

    [7] Kim S C, Kim J H, Kim E S. Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram[J]. Applied Optics, 2011, 50(19): 3375-3382.

    [8] Kim S C, Dong X B, Kwon M W, et al. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table[J]. Optics Express, 2013, 21(9): 11568-11584.

    [9] Kim S C, Kim E S. Efficient digital hologram computation using difference between frames and compensated principal fringe patterns[C]. SPIE, 2014, 9006: 90061M.

    [10] Jia J, Wang Y T, Liu J, et al. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display[J]. Applied Optics, 2013, 52(7): 1404-1412.

    [11] Jia J, Wang Y T, Liu J, et al. Effective CGH calculation algorithm with low memory usage using compressed look-up table based on separation of light modulation variable[C]. Imaging and Applied Optics, 2014: Jtu4A.25.

    [12] Matusushima K, Schimmel H, Wyrowski F. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves[J]. Journal of the Optical Society of America A, 2003, 20(9):1755-1762.

    [13] Matusushima K. Computer-generated holograms for three-dimensional surface objects with shade and texture[J]. Applied Optics, 2005, 44(22):4607-4614.

    [14] Ahrenberg L, Benzie P, Magnor M, et al. Computer generated holograms form three dimensional meshes using an analytic light transport mode[J]. Applied Optics, 2008, 47(10): 1567-1574.

    [15] Matsushima K, Nakahara S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method[J]. Applied Optics, 2009, 48(34): 54-63.

    [16] Li J C, Gui J B, Lou Y L, et al. Study of creation algorithm of computer-generated hologram of diffuse reflection 3D object[J]. Laster & Optoelectronics Progress, 2013, 50(2): 020903.

    [17] Zhang Y P, Zhang J Q, Chen W, et al. Fast computer generated hologram algorithm of triangle mesh models[J]. Chinese Journal of Lasers, 2013, 40(7): 0709001.

    [18] Pan Y J, Wang Y T, Liu J, et al. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display[J]. Applied Optics, 2013, 52(1): A290-A299.

    [19] Pan Y J, Wang Y T, Liu J, et al. Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography[J]. Applied Optics, 2013, 52(18): 4391-4399.

    [20] Pan Y J, Wang Y T, Liu J, et al. Improve full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation[J]. Applied Optics, 2014, 53(7): 1354-1362.

    [21] Sakata H, Sakamoto Y. Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space[J]. Applied Optics, 2009, 48(34): H212-H221.

    CLP Journals

    [1] Jin Xiaoyu, Gui Jinbin, Liu Chao, Zheng Liting, Lou Yuli. Progress of Fast Generation Algorithm of Computer-Generated Hologram Based on Point Source Model[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100005

    Liu Chao, Gui Jinbin, Li Junchang, Song Qinghe, Lou Yuli, Liu Zhiqiang. Fast Generation Algorithm of Computer-Generated Hologram Based on Triangular Surface Light Source Frequency Spectrum Analytic Solutions[J]. Laser & Optoelectronics Progress, 2018, 55(1): 10901
    Download Citation