• Advanced Photonics Nexus
  • Vol. 2, Issue 6, 066009 (2023)
Yanqi Liu1、2、†, Keyang Liu1、3, Zhaoyang Li1、2、*, Yuxin Leng1、*, and Ruxin Li1、2、4、*
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, State Key Laboratory of High Field Laser Physics, Shanghai, China
  • 2Zhangjiang Laboratory, Shanghai, China
  • 3Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, Center for Attosecond Science and Technology, Xi’an, China
  • 4ShanghaiTech University, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.2.6.066009 Cite this Article Set citation alerts
    Yanqi Liu, Keyang Liu, Zhaoyang Li, Yuxin Leng, Ruxin Li. Coherently tiled Ti:sapphire laser amplification: a way to break the 10 petawatt limit on current ultraintense lasers[J]. Advanced Photonics Nexus, 2023, 2(6): 066009 Copy Citation Text show less
    References

    [1] D. Strickland, G.A. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [2] G.A. Mourou. Nobel lecture: extreme light physics and application. Rev. Mod. Phys., 91, 030501(2019).

    [3] Y. Shou et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma. Nat. Photonics, 17, 137-142(2023).

    [4] W. Wang et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature, 595, 516-520(2021).

    [5] Y. Ping et al. Turbulent magnetic reconnection generated by intense lasers. Nat. Phys., 19, 263-270(2023).

    [6] A. Di Piazza et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177-1228(2012).

    [7] M. Aoyama et al. 0.85-PW, 33-fs Ti:sapphire laser. Opt. Lett., 28, 1594-1596(2003).

    [8] J. H. Sung et al. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett., 42, 2058-2061(2017).

    [9] W. Li et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett., 43, 5681-5684(2018).

    [10] F. Lureau et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. Eng., 8, e43(2020).

    [11] J. W. Yoon et al. Realization of laser intensity over 1023  W/cm2. Optica, 8, 630-635(2021). https://doi.org/10.1364/OPTICA.420520

    [12] C. Radier et al. 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Sci. Eng., 10, e21(2022).

    [13] G.A. Mourou, T. Tajima, S. V. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309-371(2006).

    [14] D. Guénot et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photonics, 11, 293-296(2017).

    [15] F. Sauter. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Für Phys., 69, 742-764(1931).

    [16] W. Heisenberg, H. Euler. Folgerungen aus der Diracschen Theorie des Positrons. Z. Für Phys., 98, 714-732(1936).

    [17] J. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev., 82, 664-679(1951).

    [18] F. G. Patterson et al. Suppression of parasitic lasing in large-aperture Ti:sapphire laser amplifiers. Opt. Lett., 24, 963-965(1999).

    [19] K. Ertel et al. ASE suppression in a high energy titanium sapphire amplifier. Opt. Express, 16, 8039-8049(2008).

    [20] Z. Y. Li et al. Simulating spatiotemporal dynamics of ultra-intense ultrashort lasers through imperfect grating compressors. Opt. Express, 30, 41296-41312(2022).

    [21] A. Dubietis, G. Jonušauskas, A. Piskarskas. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun., 88, 437-440(1992).

    [22] Z. Y. Li, Y. X. Leng, R. X. Li. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks. Laser Photonics Rev., 17, 2100705(2022).

    [23] E. Khazanov et al. eXawatt Center for Extreme Light Studies. High Power Laser Sci. Eng., 11, 06000e78(2023).

    [24] G. Mourou et al. Single cycle thin film compressor opening the door to zeptosecond-exawatt physics. Eur. Phys. J. Spec. Top., 223, 1181-1188(2014).

    [25] Z. Y. Li, Y. Kato, J. Kawanaka. Simulating an ultra-broadband concept for exawatt-class lasers. Sci. Rep., 11, 1-16(2021).

    [26] Y. X. Han et al. 400 nm ultra-broadband gratings for near-single-cycle 100 petawatt lasers. Nat. Commun., 14, 3632(2023).

    [27] C. P. J. Barty. The nexawatt: a strategy for exawatt peak power lasers based on NIF and NIF-like beam lines. J. Phys. Conf. Ser., 717, 012086(2016).

    [28] T. Harimoto, H. Shiraga. Numerical analysis of near and far field patterns of second-harmonic generation with tiling nonlinear optical crystals. J. Phys. Conf. Ser., 112, 042083(2008).

    [29] A. Cotel et al. Phased-array grating compression for high-energy chirped pulse amplification lasers. Opt. Express, 15, 2742-2752(2007).

    [30] J. Qiao et al. Demonstration of large-aperture tiled-grating compressors for high-energy, petawatt-class, chirped-pulse amplification systems. Opt. Lett., 33, 1684-1686(2008).

    [31] Z. Y. Li et al. Object–image-grating self-tiling to achieve and maintain stable, near-ideal tiled grating conditions. Opt. Lett., 35, 2206-2208(2010).

    [32] Y. Q. Liuet?al.. Splicing technology of Ti:sapphire crystals for a high-energy chirped pulse amplifier laser system. High Power Laser Sci. Eng., 2, e11(2014).

    [33] K. Y. Liu et al. Demonstration of joule-level chirped pulse amplification based on tiled Ti:sapphire amplifier. Chin. Opt. Lett., 19, 011401(2021).

    [34] A. Klenke et al. Coherent beam combination of ultrafast fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 2808540(2018).

    [35] Y. X. Chu et al. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed–pump time delay. Laser Phys. Lett., 10, 055302(2013).

    [36] D. Wang, Y. X. Leng. Simulating a four-channel coherent beam combination system for femtosecond multi-petawatt lasers. Opt. Express, 27, 36137(2019).

    [37] D. Wang, Y. X. Leng. A method for aligning a femtosecond multi-petawatt coherent beam combining system. Appl. Phys. B, 127, 41(2021).

    Yanqi Liu, Keyang Liu, Zhaoyang Li, Yuxin Leng, Ruxin Li. Coherently tiled Ti:sapphire laser amplification: a way to break the 10 petawatt limit on current ultraintense lasers[J]. Advanced Photonics Nexus, 2023, 2(6): 066009
    Download Citation