• High Power Laser Science and Engineering
  • Vol. 9, Issue 1, 010000e3 (2021)
K. Jakubowska1, D. Mancelli2、3, R. Benocci4, J. Trela2, I. Errea3、5, A. S. Martynenko6、7, P. Neumayer8, O. Rosmej8, B. Borm8, A. Molineri8, C. Verona9, D. Cannatà10, A. Aliverdiev11, H. E. Roman12, and D. Batani2、6、*
Author Affiliations
  • 1IPPLM Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
  • 2CNRS, CEA, CELIA, Universite de Bordeaux, Talence, France
  • 3Donostia International Physics Center (DIPC), Donostia-San Sebastian, Basque Country, Spain
  • 4Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
  • 5Fisika Aplikatua 1 Saila, Ingeniaritza Eskola, University of the Basque Country (UPV/EHU), Basque Country, Spain & Centro de Física de Materiales (CSIC-UPV/EHU), Donostia/San Sebastian, Basque Country, Spain
  • 6Department of Plasma Physics, National Research Nuclear University MEPhI, Moscow, Russia
  • 7Joint Institute for High Temperature RAS, Moscow, Russia
  • 8GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
  • 9Dipartimento di Ingegneria Industriale, Università degli studi di Roma “Tor Vergata”, Roma, Italy
  • 10Institute for Microelectronics and Microsystems - CNR, Roma, Italy
  • 11IGRRE - Joint Institute for High Temperatures RAS, Makhachkala, Russia
  • 12Department of Physics “G. Occhialini”, University of Milano-Bicocca, Milano, Italy
  • show less
    DOI: 10.1017/hpl.2020.38 Cite this Article Set citation alerts
    K. Jakubowska, D. Mancelli, R. Benocci, J. Trela, I. Errea, A. S. Martynenko, P. Neumayer, O. Rosmej, B. Borm, A. Molineri, C. Verona, D. Cannatà, A. Aliverdiev, H. E. Roman, D. Batani. Reflecting laser-driven shocks in diamond in the megabar pressure range[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e3 Copy Citation Text show less

    Abstract

    In this work we present experimental results on the behavior of diamond at megabar pressure. The experiment was performed using the PHELIX facility at GSI in Germany to launch a planar shock into solid multi-layered diamond samples. The target design allows shock velocity in diamond and in two metal layers to be measured as well as the free surface velocity after shock breakout. As diagnostics, we used two velocity interferometry systems for any reflector (VISARs). Our measurements show that for the pressures obtained in diamond (between 3 and 9 Mbar), the propagation of the shock induces a reflecting state of the material. Finally, the experimental results are compared with hydrodynamical simulations in which we used different equations of state, showing compatibility with dedicated SESAME tables for diamond.
    $$\begin{align}P =8.6 (I/10^{14})^{2/3}\lambda^{-2/3}{(A/2Z)}^{1/3},\end{align}$$((1))

    View in Article

    $$\begin{align}S=\frac{\lambda_0}{2{\tau}_0\left(1+\delta \right)},\end{align}$$((2))

    View in Article

    $$\begin{align}D= SF/{n}_0.\end{align}$$((3))

    View in Article

    $$\begin{align}D{n}_0-n\left(D-U\right)= SF,\end{align}$$((4))

    View in Article

    $$\begin{align}n-1=\kappa \rho,\end{align}$$((5))

    View in Article

    $$\begin{align}U= SF\Bigg/\left[1+\left(n-1\right)\frac{\rho }{\rho_0}\frac{\delta }{\delta +1}\right].\end{align}$$((6))

    View in Article

    $$\begin{align}\frac{\Delta D}{D}\approx \sqrt{2{\left(\frac{0.3\ \mathrm{ns}}{14\ \mathrm{ns}}\right)}^2+{\left(\frac{0.5\ \mu \mathrm{m}}{250\ \mu \mathrm{m}}\right)}^2}\approx 0.03.\end{align}$$((7))

    View in Article

    $$\begin{align}\frac{P_2}{P_1}=\frac{4{\rho}_2}{{\left(\sqrt{\rho_1}+\sqrt{\rho_2}\right)}^2}.\end{align}$$((8))

    View in Article

    $$\begin{align}\Delta \varepsilon =\frac{1}{2}\left(P+{P}_0\right)\left(\frac{1}{\rho_0}-\frac{1}{\rho}\right).\end{align}$$((9))

    View in Article

    $$\begin{align}{n}^{\ast }=\sqrt{n^2-\frac{n_{\rm cond}}{n_{\rm cr}}},\end{align}$$((10))

    View in Article

    $$\begin{align} \displaystyle{n}_{\mathrm{cond}}&={\int}_{E_{F}+\frac{{E}_g}{2}}^{\infty}g(E)f(E) {\rm d}E,\nonumber\\ & f(E)=\frac{1}{\exp \left(\frac{E-E_{F}}{T}\right)+1}.\end{align}$$((11))

    View in Article

    $$\begin{align}{E}_g={E}_{g_{_{0}}}-A\frac{T^2}{T+{\theta}_D},\end{align}$$((12))

    View in Article

    $$\begin{align}{E}_g={E}_{g_{_{0}}}-A\left(\rho /{\rho}_0-1\right),\end{align}$$((13))

    View in Article

    K. Jakubowska, D. Mancelli, R. Benocci, J. Trela, I. Errea, A. S. Martynenko, P. Neumayer, O. Rosmej, B. Borm, A. Molineri, C. Verona, D. Cannatà, A. Aliverdiev, H. E. Roman, D. Batani. Reflecting laser-driven shocks in diamond in the megabar pressure range[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e3
    Download Citation