• Acta Optica Sinica
  • Vol. 37, Issue 3, 318002 (2017)
Wang Sheng1、2、3、*, Chen Xuanze1、2、3, Chang Lei1、2、3, Xue Ruiying1、2、3, and Sun Yujie1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0318002 Cite this Article Set citation alerts
    Wang Sheng, Chen Xuanze, Chang Lei, Xue Ruiying, Sun Yujie. Structure-Guided Development of Reversibly Photoswitchable Green Fluorescent Proteins Probe[J]. Acta Optica Sinica, 2017, 37(3): 318002 Copy Citation Text show less
    References

    [1] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein[C]. Proc Natl Acad Sci U S A, 1994, 91(26): 12501-12504.

    [2] Shaner N C, Campbell R E, Steinbach PA, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J]. Nat Biotechnol, 2004, 22(12): 1567-1572.

    [3] Shcherbo D, Merzlyak E M, Chepurnykh T V, et al. Bright far-red fluorescent protein for whole-body imaging[J]. Nat Methods, 2007, 4(9): 741-746.

    [4] Adam V, Berardozzi R, Byrdin M, et al. Phototransformable fluorescent proteins: future challenges[J]. Current Opinion in Chemical Biology, 2014, 20: 92-102.

    [5] Adam V. Phototransformable fluorescent proteins: which one for which application[J]. Histochemistry and Cell Biology, 2014, 142(1): 19-41.

    [6] Post J N, Lidke K A, Rieger B, et al. One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos[J]. FEBS Lett, 2005, 579(2): 325-330.

    [7] Mutoh T, Miyata T, Kashiwagi S, et al. Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede[J]. Exp Neurol, 2006, 200(2): 430-437.

    [8] Habuchi S, Ando R, Dedecker P, et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa[C]. Proc Natl Acad Sci U S A, 2005, 102(27): 9511-9516.

    [9] Jensen N A, Danzl J G, Willig K I, et al. Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein Dreiklang[J]. Chemphyschem, 2014, 15(4): 756-762.

    [10] Zhang X, Zhang M, Li D, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[C]. Proc Natl Acad Sci U S A, 2016, 113(37): 10364-10369.

    [11] Wang S, Chen X Z, Chang L, et al. GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy[J]. ACS Nano, 2016, 10(10): 9136-9144.

    [12] Bourgeois D, Adam V. Reversible photoswitching in fluorescent proteins: a mechanistic view[J]. IUBMB Life, 2012, 64(6): 482-491.

    [13] Creemers T M, Lock A J, Subramaniam V V, et al. Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning[J]. Nature Structural Biology, 1999, 6(7): 557-560.

    [14] Bizzarri R, Serresi M, Cardarelli F, et al. Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable[J]. J Am Chem Soc, 2010, 132(1): 85-95.

    [15] Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(7368): 204-208.

    [16] Grotjohann T, Testa I, Reuss M, et al. rsEGFP2 enables fast RESOLFT nanoscopy of living cells[J]. eLife, 2012, 1: e00248.

    [17] Chmyrov A, Keller J, Grotjohann T, et al. Nanoscopy with more than 100,000′ doughnuts′[J]. Nat Methods, 2013, 10(8): 737-740.

    [18] Duwé S, de Zitter E, Gielen V, et al. Expression-enhanced fluorescent proteins based on enhanced green fluorescent protein for super-resolution microscopy[J]. ACS Nano, 2015, 9(10): 9528-9541.

    [19] Khatib M E, Martins A, Bourgeois D, et al. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm[J]. Sci Rep, 2016, 6: 18459.

    [20] Brakemann T, Stiel A C, Weber G, et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching[J]. Nat Biotechnol, 2011, 29(10): 942-947.

    [21] Andresen M, Stiel A C, Trowitzsch S, et al. Structural basis for reversible photoswitching in Dronpa[C]. Proc Natl Acad Sci U S A, 2007, 104(32): 13005-13009.

    [22] Stiel A C, Trowitzsch S, Weber G, et al. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants[J]. Biochem J, 2007, 402(1): 35-42.

    [23] Adam V, Moeyaert B, David C C, et al. Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications[J]. Chem Biol, 2011, 18(10): 1241-1251.

    [24] Chang H, Zhang M, Ji W, et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications[C]. Proc Natl Acad Sci U S A, 2012, 109(12): 4455-4460.

    [25] Zhang X, Chen X, Zeng Z, et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI)[J]. ACS Nano, 2015, 9(3): 2659-2667.

    [26] Dertinger T, Colyer R, Vogel R, et al. Superresolution optical fluctuation imaging (SOFI)[J]. Adv Exp Med Biol, 2011, 733: 17-21.

    [27] Wang S, Moffitt J R, Dempsey G T, et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging[C]. Proc Natl Acad Sci U S A, 2014, 111(23): 8452-8457.

    [28] Nienhaus K, Nienhaus G U. Photoswitchable fluorescent proteins: do not always look on the bright side[J]. ACS Nano, 2016, 10(10): 9104-9108.

    [29] Andresen M, Stiel A C, Folling J, et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy[J]. Nat Biotechnol, 2008, 26(9): 1035-1040.

    [30] Tiwari D K, Arai Y, Yamanaka M, et al. A fast-and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy[J]. Nat Methods, 2015, 12(6): 515-518.

    [31] Shcherbakova D M, Sengupta P, Lippincott-Schwartz J, et al. Photocontrollable fluorescent proteins for superresolution imaging[J]. Annual Review of Biophysics, 2014, 43: 303-329.

    [32] Stiel A C, Andresen M, Bock H, et al. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy[J]. Biophys J, 2008, 95(6): 2989-2997.

    [33] Lavoie-Cardinal F, Jensen N A, Westphal V, et al. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins[J]. Chemphyschem, 2014, 15(4): 655-663.

    [34] Pakhomov A A, Martynov V I. GFP family: structural insights into spectral tuning[J]. Chemistry Biology, 2008, 15(8): 755-764.

    Wang Sheng, Chen Xuanze, Chang Lei, Xue Ruiying, Sun Yujie. Structure-Guided Development of Reversibly Photoswitchable Green Fluorescent Proteins Probe[J]. Acta Optica Sinica, 2017, 37(3): 318002
    Download Citation