• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210836 (2022)
Tianhao Zhu, Hui Zhou, Yan Shi, and Qianyin Zhang
Author Affiliations
  • School of Electronic Information, Wuhan University, Wuhan 430072, China
  • show less
    DOI: 10.3788/IRLA20210836 Cite this Article
    Tianhao Zhu, Hui Zhou, Yan Shi, Qianyin Zhang. Parameter extraction method on the multiple mode waveforms of satellite laser altimeter(Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210836 Copy Citation Text show less
    References

    [1] W Wagner, A Ullrich, V Ducic, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 60, 100-112(2006).

    [2] C Mallet, F Bretar. Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1-16(2009).

    [3] J Shi, M Menenti, R Lindenbergh. Parameterization of surface roughness based on ICESat/GLAS full waveforms: A case study on the Tibetan Plateau. Journal of Hydrometeorology, 14, 1278-1292(2013).

    [4] I J Bye, P R J North, S O Los, et al. Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sensing of Environment, 188, 177-189(2017).

    [5] Chenchen Yang, Junfeng Xie, Baomin Han, et al. Correlation analysis between ICESat/GLAS altimetry accuracy and echo waveform. Applied Laser, 40, 9(2020).

    [6] T Hermosilla, L A Ruiz, A N Kazakova, et al. Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire, 23, 224-233(2013).

    [7] X Wang, X Cheng, P Gong, et al. Earth science applications of ICESat/GLAS: A review. International Journal of Remote Sensing, 32, 8837-8864(2011).

    [8] D Mongus, B Žalik. Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 1-12(2012).

    [9] M A Hofton, J B Minster, J B Blair. Decomposition of laser altimeter waveforms. IEEE Transactions on Geoscience and Remote Sensing, 38, 1989-1996(2000).

    [10] Y Qin, T T Vu, Y Ban. Toward an optimal algorithm for LiDAR waveform decomposition. IEEE Geoscience and Remote Sensing Letters, 9, 482-486(2011).

    [11] J Zhu, Z Zhang, X Hu, et al. Analysis and application of LiDAR waveform data using a progressive waveform decomposition method. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, W12, 31-36(2011).

    [12] B Jutzi, U Stilla. Range determination with waveform recording laser systems using a Wiener filter. ISPRS Journal of Photogrammetry & Remote Sensing, 61, 95-107(2007).

    [13] Junfeng Xie, Chenchen Yang, Yongkang Mei, et al. Full waveform decomposition of spaceborne laser based on genetic algorithm. Infrared and Laser Engineering, 49, 20200945(2020).

    [14] S D Miller, G L Stephens. Multiple scattering effects in the lidar pulse stretching problem. Journal of Geophysical Research: Atmospheres, 104, 22205-22219(1999).

    [15] Z Zhang, H Xie, X Tong, et al. A combined deconvolution and Gaussian decomposition approach for overlapped peak position extraction from large-footprint satellite laser altimeter waveforms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP, 1-1(2020).

    [16] T Zhou, S C Popescu, K Krause, et al. Gold – A novel deconvolution algorithm with optimization for waveform LiDAR processing. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 131-150(2017).

    [17] Morháč Miroslav, Matoušek Vladislav. High-resolution boosted deconvolution of spectroscopic data. Journal of Computational & Applied Mathematics, 235, 1629-1640(2011).

    [18] Quanhua Zhao, Weiduo Chen, Yu Wang, et al. Variable component waveform decomposition of partial normal full wave lidar data. Optics and Precision Engineering, 26, 161-171(2018).

    [19] Li Yong, fan Chengyu, Shi Dongfeng. Blind restation method of atmospheric turbulence degraded image based on accelerated regularization RL algithm [J] Journal of Atmospheric Environmental Optics, 2011, 6 (5): 342350. (in Chinese)

    [20] M Morháč. Deconvolution methods and their applications in the analysis of γ-ray spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 559, 119-123(2006).

    [21] Min Luo, Yan Shi, Hui Zhou, et al. Lidar pulse waveform decomposition based on variable component parameter random sampling. Infrared and Laser Engineering, 48, 1005009(2019).

    [22] S C Popescu, K Zhao, A Neuenschwander, et al. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sensing of Environment, 115, 2786-2797(2011).

    [23] K W Hudnut, B A Brooks, K Scharer, et al. Airborne lidar and electro‐optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California. Seismological Research Letters, 91, 2096-2107(2020).

    [24] S Hancock, J Armston, M Hofton, et al. The GEDI simulator: A large‐footprint waveform lidar simulator for calibration and validation of spaceborne missions. Earth and Space Science, 6, 294-310(2019).

    [25] Ren Liu, Junfeng Xie, Fan Mo, et al. Simulation of echo waveform of spaceborne laser altimeter based on fine terrain. Acta Photonica Sinica, 47, 1128004(2018).

    Tianhao Zhu, Hui Zhou, Yan Shi, Qianyin Zhang. Parameter extraction method on the multiple mode waveforms of satellite laser altimeter(Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210836
    Download Citation