• Laser & Optoelectronics Progress
  • Vol. 60, Issue 1, 0114005 (2023)
Zhiming Tian1、2, Teng Cai1、2, Ruozhou Li1、2、*, Yuming Fang1、2、**, and Ying Yu1、2
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • 2National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • show less
    DOI: 10.3788/LOP213182 Cite this Article Set citation alerts
    Zhiming Tian, Teng Cai, Ruozhou Li, Yuming Fang, Ying Yu. Wavelength-Controlled Photothermal Microactuator Based on Suspension Printing and its Characterization[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0114005 Copy Citation Text show less
    References

    [1] Maitland D J, Metzger M F, Schumann D et al. Photothermal properties of shape memory polymer micro-actuators for treating stroke[J]. Lasers in Surgery and Medicine, 30, 1-11(2002).

    [2] Hiremath S, Shrishail M H, Kulkarni S M. Progression and characterization of polydimethylsiloxane-carbon black nanocomposites for photothermal actuator applications[J]. Sensors and Actuators A: Physical, 319, 112522(2021).

    [3] Miskin M Z, Cortese A J, Dorsey K et al. Electronically integrated, mass-manufactured, microscopic robots[J]. Nature, 584, 557-561(2020).

    [4] Chollet F. Devices based on co-integrated MEMS actuators and optical waveguide: a review[J]. Micromachines, 7, 18(2016).

    [5] Li R Z, Yu Y, Zhang X Y et al. Integrated optical readout using a hybrid plasmonic directional coupler in water[J]. Applied Optics, 56, 7230-7236(2017).

    [6] Wang B, Shi B, Yi F T et al. Photothermal microactuators fabricated by LIGA technology[J]. Key Engineering Materials, 562/563/564/565, 534-537(2013).

    [7] Elbuken C, Gui L, Ren C L et al. Design and analysis of a polymeric photo-thermal microactuator[J]. Sensors and Actuators A: Physical, 147, 292-299(2008).

    [8] Patrício S G, Sousa L R, Correia T R et al. Freeform 3D printing using a continuous viscoelastic supporting matrix[J]. Biofabrication, 12, 035017(2020).

    [9] Takishima Y, Yoshida K, Khosla A et al. Fully 3D-printed hydrogel actuator for jellyfish soft robots[J]. ECS Journal of Solid State Science and Technology, 10, 037002(2021).

    [10] Yao J N, Li R Z, Fang Y M et al. Three-dimensional printing in hydrogel for a complex waveguiding photothermal microactuator[J]. OSA Continuum, 4, 1555-1563(2021).

    [11] Cheng W, Zhang J, Liu J et al. Granular hydrogels for 3D bioprinting applications[J]. View, 1, 20200060(2020).

    [12] Cho K J, Asada H. Multi-axis SMA actuator array for driving anthropomorphic robot hand[C], 1356-1361(2005).

    [13] Peters C, Ergeneman O, García P D W et al. Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications[J]. Advanced Functional Materials, 24, 5269-5276(2014).

    [14] Zhao G, Sun Z Z, Wang J et al. Development of biocompatible polymer actuator consisting of biopolymer chitosan, carbon nanotubes, and an ionic liquid[J]. Polymer Composites, 38, 1609-1615(2017).

    [15] Zhang X B, Pint C L, Lee M H et al. Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites[J]. Nano Letters, 11, 3239-3244(2011).

    [16] Jiang Z, Xu M, Li F Y et al. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation[J]. Journal of the American Chemical Society, 135, 16446-16453(2013).

    [17] Kondratov A V, Gorkunov M V, Darinskii A N et al. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance[J]. Physical Review B, 93, 195418(2016).

    [18] Chernysheva M, Rozhin A, Fedotov Y et al. Carbon nanotubes for ultrafast fibre lasers[J]. Nanophotonics, 6, 1-30(2017).

    [19] Cai T, Tang S W, Zheng B et al. Ultrawideband chromatic aberration-free meta-mirrors[J]. Advanced Photonics, 3, 016001(2020).

    [20] Tan T X, Tian C G, Ren Z Y et al. LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy[J]. Physical Chemistry Chemical Physics: PCCP, 15, 21034-21042(2013).

    [21] Lee S H, Jun B H. Silver nanoparticles: synthesis and application for nanomedicine[J]. International Journal of Molecular Sciences, 20, 865(2019).

    [22] Sutton A, Shirman T, Timonen J V I et al. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation[J]. Nature Communications, 8, 14700(2017).

    [23] Li R Z, Hu A M, Zhang T et al. Direct writing on paper of foldable capacitive touch pads with silver nanowire inks[J]. ACS Applied Materials & Interfaces, 6, 21721-21729(2014).

    [24] Bhattacharjee T, Zehnder S M, Rowe K G et al. Writing in the granular gel medium[J]. Science Advances, 1, e1500655(2015).

    [25] Yuan X C L, Zayats A. Laser: sixty years of advancement[J]. Advanced Photonics, 2, 050101(2020).

    [26] Chang G Q. Laser, domains, and more: an interview with shining Zhu[J]. Advanced Photonics, 2, 050502(2020).

    Zhiming Tian, Teng Cai, Ruozhou Li, Yuming Fang, Ying Yu. Wavelength-Controlled Photothermal Microactuator Based on Suspension Printing and its Characterization[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0114005
    Download Citation