• Laser & Optoelectronics Progress
  • Vol. 60, Issue 1, 0114005 (2023)
Zhiming Tian1、2, Teng Cai1、2, Ruozhou Li1、2、*, Yuming Fang1、2、**, and Ying Yu1、2
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • 2National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • show less
    DOI: 10.3788/LOP213182 Cite this Article Set citation alerts
    Zhiming Tian, Teng Cai, Ruozhou Li, Yuming Fang, Ying Yu. Wavelength-Controlled Photothermal Microactuator Based on Suspension Printing and its Characterization[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0114005 Copy Citation Text show less
    Structure of U-shaped photothermal microactuator
    Fig. 1. Structure of U-shaped photothermal microactuator
    Simulation structure of U-shaped photothermal microactuator
    Fig. 2. Simulation structure of U-shaped photothermal microactuator
    Absorption spectra of functional dye solutions
    Fig. 3. Absorption spectra of functional dye solutions
    Fabrication process for the square-spiral actuating arm. (a) Hydrogel printing; (b) UV beam curing; (c) coating of functional dye solutions
    Fig. 4. Fabrication process for the square-spiral actuating arm. (a) Hydrogel printing; (b) UV beam curing; (c) coating of functional dye solutions
    Photothermal microactuator printed by hydrogel support. (a) Photothermal microactuator; (b) photothermal microactuator fixed on a cured resin support plate; (c) microscopic image of the actuation drive arm; (d) output from the free end of the cantilever beam
    Fig. 5. Photothermal microactuator printed by hydrogel support. (a) Photothermal microactuator; (b) photothermal microactuator fixed on a cured resin support plate; (c) microscopic image of the actuation drive arm; (d) output from the free end of the cantilever beam
    Initial state of the photothermal microactuator under the thermal imaging camera. (a) Type I photothermal microactuator; (b) type II photothermal microactuator
    Fig. 6. Initial state of the photothermal microactuator under the thermal imaging camera. (a) Type I photothermal microactuator; (b) type II photothermal microactuator
    Variation curve of actuator temperature with time. (a) 638 nm laser; (b) 405 nm laser
    Fig. 7. Variation curve of actuator temperature with time. (a) 638 nm laser; (b) 405 nm laser
    State of the actuator driven by the laser. (a) Initial state of type Ⅰ actuator (0 mW); (b) strain state of type Ⅰ actuator (100 mW); (c) initial state of type Ⅱ actuator (0 mW); (d) strain state of type Ⅱ actuator (100 mW)
    Fig. 8. State of the actuator driven by the laser. (a) Initial state of type Ⅰ actuator (0 mW); (b) strain state of type Ⅰ actuator (100 mW); (c) initial state of type Ⅱ actuator (0 mW); (d) strain state of type Ⅱ actuator (100 mW)
    Variation curve of actuator displacement with time. (a) 408 nm laser; (b) 638 nm laser
    Fig. 9. Variation curve of actuator displacement with time. (a) 408 nm laser; (b) 638 nm laser
    ParameterValue
    Length L1 /mm6.12
    Length L2 /mm4.90
    Width W /mm1.42
    Diameter d /μm200
    Thermal conductivity K /[W·(m·K)-10.16
    Convection coefficient h /[W·(m2·K)-110
    Heat capacity C /[J·(kg·K)-11.50×103
    Initial temperature T0 /℃21.0
    Table 1. Material parameters and structural dimensions of photothermal microactuator
    Zhiming Tian, Teng Cai, Ruozhou Li, Yuming Fang, Ying Yu. Wavelength-Controlled Photothermal Microactuator Based on Suspension Printing and its Characterization[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0114005
    Download Citation