• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 279 (2019)
Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.15541/jim20180465 Cite this Article
    Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], [in Chinese]. Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects[J]. Journal of Inorganic Materials, 2019, 34(3): 279 Copy Citation Text show less
    References

    [1] D M ROWE. Modules, Systems,Applications in Thermoelectrics(2012).

    [2] Q JIE, K MCENANEY, D KRAEMER et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy, 1, 16153(2016).

    [3] A NOZARIASBMARZ, F SUAREZ, D VASHAEE et al. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ. Sci., 9, 2099-2113(2016).

    [4] D CHAMPIER. Thermoelectric generators: a review of applications. Energy Convers. Manage., 140, 167-181(2017).

    [5] M ROWE D. CRC Handbook of Thermoelectrics(1995).

    [6] L CHEN, C UHER, X SHI. Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev., 61, 1-37(2016).

    [7] T QIN Y, F QIU P, H ZHANG Q et al. High-performance bulk thermoelectric materials and devices. Science Foundation in China, 24, 67-80(2016).

    [8] C AN H, H SEON J. Thermoelectric generator for vehicle. US8839614, 2014.

    [9] G CHO, Y KIM T, A NEGASH A. Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules. Energy Convers. Manage., 124, 280-286(2016).

    [10] T KUROKI, K MAKINO, K KABEYA et al. Thermoelectric generation using waste heat in steel works.. Electron. Mater., 43, 2405-2410(2014).

    [11] L BENNETT G. Space Applications. in CRC Handbook of Thermoelectrics, 515-537(1995).

    [12] J Z ZHANG. Thermoelectric Technology(2013).

    [13] P QIU, F HAO, Y TANG et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy Environ. Sci., 9, 3120-3127(2016).

    [14] T OCHI, Y GENG H, Q GUO J et al. Development of skutterudite thermoelectric materials and modules.. Electron. Mater., 41, 1036-1042(2012).

    [15] T OCHI, S SUZUKI, H GENG et al. Thermoelectric properties of multifilled skutterudites with La as the main filler.. Electron. Mater., 42, 1999-2005(2013).

    [16] K BARTHOLOMÉ, B BALKE, D ZUCKERMANN et al. Thermoelectric modules based on half-Heusler materials produced in large quantities.. Electron. Mater., 43, 1775-1781(2014).

    [17] Q ZHANG, M DYLLA, Z ZHOU et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy, 41, 501-510(2017).

    [18] G FU C, Q BAI S, Y LIU et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 6, 8144-1-7(2015).

    [19] E GROB, M RIFFEL. STÖHRER U. Thermoelectric generators made of FeSi2 and HMS: fabrication and measurement.. Mater. Res., 10, 34-40(1995).

    [20] P FLEURIAL J, N SNYDER G, T CAILLAT et al. Development of High Efficiency Segmented Thermoelectric Unicouples. 20th International Conference on Thermoelectrics, Beijing, China, 282-285(2001).

    [21] L RAUSCHER, H KAIBE, I AOYAMA et al. Doping effects on thermoelectric properties of higher manganese silicides (HMSs, MnSi1.74) and characterization of thermoelectric generating module using, p-type (Al, Ge and Mo)-doped HMSs and n-type Mg2Si0.4Sn0.6 legs. Jpn. J. Appl. Phys., 44, 4275-4281(2005).

    [22] T CAILLAT, H SABER H, S EL-GENK M et al. Tests results and performance comparisons of coated and uncoated skutterudite based segmented unicouples. Energy Convers. Manage., 47, 174-200(2006).

    [23] T ITO, Y HORI. Fabrication of 500 ℃ Class Thermoelectric Module and Evaluation of its High Temperature Stability, 642-645(2006).

    [24] M S EL-GENK, T CAILLAT, H SABER H. Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manage., 48, 555-567(2007).

    [25] A SINGH, C THINAHARAN, S BHATTACHARYA et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85). J. Phys. D Appl. Phys., 42, 015502-1-5(2009).

    [26] N VIKHOR L, I ANATYCHUK L. Generator modules of segmented thermoelements. Energy Convers. Manage., 50, 2366-2372(2009).

    [27] C TIAN, S TANG, D ZHAO et al. Fabrication of a CoSb3-based thermoelectric module. Mater. Sci. Semicon. Proc., 13, 221-224(2010).

    [28] S ZHU, D WU, J POON S et al. Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials.. Mater. Res., 26, 2795-2802(2011).

    [29] T STRUTYNSKA L, I ANATYCHUK L, N VIKHOR L et al. Segmented generator modules using Bi2Te3-based materials.. Electron. Mater., 40, 957-961(2011).

    [30] T SEETAWAN. Designing and fabricating of low cost thermoelectric power generators. Appl. Mechan. Mater., 110-116, 4101-4105(2011).

    [31] B POUDEL, A MUTO, J YANG et al. Skutterudite unicouple characterization for energy harvesting applications. Adv. Energy Mater., 3, 245-251(2013).

    [32] T TAKABATAKE. Nano-cage Structured Materials: Clathrates. in Thermoelectric Nanomaterials: Materials Design and Application. Springer, Heidelberg, 33-49(2013).

    [33] D KRAEMER, K MCENANEY, J SUI et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ. Sci., 8, 1299-1308(2015).

    [34] J SNYDER G, V NONG N, H LE T et al. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. Energy Convers. Manage., 99, 20-27(2015).

    [35] A YAMAMOTO, X HU, K NAGASE. Characterization of half-Heusler unicouple for thermoelectric conversion.. Appl. Phys., 117, 1457-1461(2015).

    [36] P BALAYA. High-efficiency energy harvesting using TAGS-85/half-Heusler thermoelectric devices. Energy Harvesting and Storage: Materials, Devices, and Applications V, 9115, 911507(2014).

    [37] H MIDDLETON, G SKOMEDAL, L HOLMGREN et al. Design, assembly and characterization of silicide-based thermoelectric modules. Energy Convers. Manage., 110, 13-21(2016).

    [38] R HANUS, M DYLLA, A ZONG P et al. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci., 10, 183-191(2017).

    [39] M OHTA, P JOOD, X HU et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci., 9, 517-529(2016).

    [40] J LIAO, Y TANG, Q ZHANG et al. Realizing thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci., 10, 956-963(2017).

    [41] L ASELAGE T, A WHALEN S, A APBLETT C. Improving power density and efficiency of miniature radioisotopic thermoelectric generators.. Power Sources, 180, 657-663(2008).

    [42] T HAMMEL, R BENNETT, W OTTING et al. Multi-mission Radioisotope Thermoelectric Generator (MMRTG) and Performance Prediction Model. Int. Energy Convers. Engineer. Conf., 551-555(2013).

    [43] X SHI, Q ZHANG W, Q SONG J et al. Heat conduction in thermoelectric materials and micro-devices. Physics, 42, 112-123(2013).

    [44] F ZHANG, D HUANG, Y ZANG et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun., 6, 8356-1-10(2015).

    [45] D CHEN L, X SHI, H LIU R. Thermoelectric Materials and Devices(2017).

    [46] H ZHANG Q, Y HUANG X, Q BAI S et al. Thermoelectric devices for power generation: recent progress and future challenges. Adv. Eng. Mater., 18, 194-213(2016).

    [47] J CHEN, L WU, Z YAN. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator.. Appl. Phys., 79, 8823-8828(1996).

    [48] J RAMOUSSE, D SGORLON, G FRAISSE et al. Comparison of different modeling approaches for thermoelectric elements. Energy Convers. Manage., 65, 351-356(2013).

    [49] L CHEN, J GONG, F SUN et al. Effect of heat transfer on the performance of thermoelectric generators. Int.. Therm. Sci., 41, 95-99(2002).

    [50] S LEE H. Optimal design of thermoelectric devices with dimensional analysis. Appl. Energy, 106, 79-88(2013).

    [51] A MONTECUCCO, R KNOX A, R BUCKLE J. Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices. Appl. Therm. Engineer., 35, 177-184(2012).

    [52] A ROSENDAHL L, T CONDRA, M CHEN. A three-dimensional numerical model of thermoelectric generators in fluid power systems. Int.. Heat Mass Trans., 54, 345-355(2011).

    [53] C CHENG T, H CHENG C, Y HUANG S. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int.. Heat Mass Trans., 53, 2001-2011(2010).

    [54] Y LIAO C, H CHEN W, I HUNG C. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Appl. Energy, 89, 464-473(2012).

    [55] M LAZARD, C GOUPIL, G FRAISSE et al. Study of a thermoelement’s behaviour through a modelling based on electrical analogy. Int.. Heat Mass Trans., 53, 3503-3512(2010).

    [56] E ANTONOVA E, C LOOMAN D. Finite Elements for Thermoelectric Device Analysis in ANSYS. International Conference on Thermoelectrics. IEEE Xplore, 215-218(2005).

    [57] F XU J. ANSYS Workbench 15. 0. Publishing House of Electronics Industry, Beijing, China, 2014.

    [58] D JIA X. Studies on the Properties of Thermoelectric Materials and Coupled Thermal-El-Mechanical Behaviors of Thermoelectric Devices. Lanzhou: Lanzhou University dissertation, PhD(2015).

    [59] J BUIST R, J ROMAN S. Development of a Burst Voltage Measurement System for High-Resolution Contact Resistance Tests of Thermoelectric Heterojunctions. Eighteenth International Conference on Thermoelectrics. IEEE, 249-251(1999).

    [60] H LEE C, J CHEN W, N LIAO C. Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper. Electrochem. Solid-State Lett., 10, P23-P25(2007).

    [61] H CHANG Y, P FENG S, J YANG et al. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials. Phys, Chem. Chem. Phys., 15, 6757-6762(2013).

    [62] Y HUANG J, C LIN Y, L YANG C et al. Low-temperature bonding of Bi0.5Sb1.5Te3 thermoelectric material with Cu electrodes using a thin-film In interlayer. Metall. Mater. Trans. A, 47, 4767-4776(2016).

    [63] A LEAVITT F, C BASS J, B ELSNER N. Thermoelectric Module with Gapless Eggcrate.. US5875098A, 1999.

    [65] D KRAEMER, K MCENANEY, J SUI et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts. Energy Environ. Sci., 8, 1299-1308(2015).

    [66] C DI, P SHENG, Y SUN et al. Organic thermoelectric materials and devices based on p- and n-type poly (metal 1, 1, 2, 2-ethenetetrathiolate)s. Adv. Mater., 24, 932-937(2012).

    [67] R SALVADOR J, Z YE, Y CHO J et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys. Chem. Chem. Phys., 16, 12510-12520(2014).

    [68] B ABELES, W COHEN R. Ge-Si thermoelectric power generator.. Appl. Phys., 35, 247-248(1964).

    [69] K TERAKADO, M OGUSU, K TAGUCHI et al. Linear-shaped Si-Ge thermoelectric module. Semiconductors, 53-57(2000).

    [70] LE DEFILLIPO, B FRANKLIN, JF NAKAHARA. Development of an improved performance SiGe unicouple. AIP Conf. Proc., 324, 809-814(1995).

    [71] T TAKEUCHI, I MATSUBARA, R FUNAHASHI et al. Fabrication of an all-oxide thermoelectric power generator. Appl. Phys. Lett., 78, 3627-3629(2001).

    [72] J FAN, S BAI, L CHEN et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Mater. Lett., 58, 3876-3878(2004).

    [73] T WOJCIECHOWSKI K, R MANIA, R ZYBALA. High temperature CoSb3-Cu junctions. Microelectron. Reliab., 51, 1198-1202(2011).

    [74] W JIANG, Y LI X, G ZHAO D et al. Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation.. Inorg. Mater., 24, 545-548(2009).

    [75] G ZHAO D, L WANG, H CAI Y et al. One-step sintering of CoSb3 thermoelectric material and Cu-W alloy by spark plasma sintering. Mater. Sci. Forum., 389-393(2009).

    [76] S TANG Y, D REN D, Q BAI S et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn Solder.. Inorg. Mater., 30, 256-260(2015).

    [77] Y. ZHANG Q, F REN Z, C LAN Y. Advanced Thermoelectrics: Materials, Contacts, Devices, and System(2018).

    [78] D ZHAO, L HE, X LI et al. High temperature reliability evaluation of CoSb3/electrode thermoelectric joints. Intermetallics, 17, 136-141(2009).

    [79] M GU, X XIA, X LI et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0. 6Co4Sb12 thermoelectric joints at high temperature.. Alloys Compd., 610, 665-670(2014).

    [80] P FLEURIAL J, T CAILLAT, C CHI S. Electrical Contacts for Skutterudite Thermoelectric Materials, A1, 2012.

    [81] K HASEZAKI, A YAMADA, H TSUKUDA et al. Thermoelectric Semiconductor and Electrode-fabrication and Evaluation of SiGe/electrode. XVI International Conference on Thermoelectrics. IEEE, 599-602(1997).

    [82] L BENNETT G. Space Applications. in: ROWE D. M. CRC Handbook of Thermoelectrics(1995).

    [83] F MONDT J. SP-100 Space Subsysterns. in: ROWE D. M. CRC Handbook of Thermoelectrics(1995).

    [84] D COCKFIELD R. Engineering Development Testing of the GPHS-RTG Converter. Intersociety Energy Conversion Engineering Conference, 321-325(1981).

    [85] Y MIYAMOTO, S LIN J, K TANIHATA et al. Microstructure and property of (Si-MoSi2)/SiGe thermoelectric convertor unit. Functionally Graded Materials, 1997, 599-604(1996).

    [86] S LIN J, Y MIYAMOTO. One-step sintering of SiGe thermoelectric conversion unit and its electrodes.. Mater. Res., 15, 647-652(2000).

    [87] H WU J, Y YANG X, M GU et al. Fabrication and contact resistivity of W-Si3N4/TiB2-Si3N4/p-SiGe thermoelectric joints. Ceram. Int., 42, 8044-8050(2016).

    [88] H SABER H, S ELGENK M. Radioisotope power systems with skutterudite-based thermoelectric converters. American Institute of Physics, 485-494(2005).

    [89] A APBLETT C, L ASELAGE T, A WHALEN S. Improving power density and efficiency of miniature radioisotopic thermoelectric generators.. Power Sources, 180, 657-663(2008).

    [90] J SAKAMOTO, S EL-GENK M, H SABER H et al. Life Tests of a Skutterudites Thermoelectric Unicouple (MAR-03). 22nd International Conference on Thermoelectrics, 417-420(2003).

    [91] X XIA, X LI, X HUANG et al. Preparation and structural evolution of Mo/SiOx protective coating on CoSb3-based filled skutterudite thermoelectric material.. Alloys Compd., 604, 94-99(2014).

    [92] X LI, H DONG, X HUANG et al. Improved oxidation resistance of thermoelectric skutterudites coated with composite glass. Ceram. Int., 39, 4551-4557(2013).

    [93] H DONG, X LI, Y TANG et al. Fabrication and thermal aging behavior of skutterudites with silica-based composite protective coatings.. Alloys Compd., 527, 247-251(2012).

    [94] I CHI, S FIRDOSY, T CAILLAT et al. Skutterudite-based Advanced Thermoelectric Technology for Potential Integration into an Enhanced MMRTG (eMMRTG). XVI International Forum on Thermoelectricity(2015).

    [95] T CLIN, D VASILEVSKIY, S TURENNE et al. Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module.. Electron. Mater., 38, 994-1001(2009).

    [96] K LIU C, L LI S, Y HSU C et al. Thermo-mechanical Analysis of Thermoelectric Modules. Microsystems Packaging Assembly and Circuits Technology Conference, 1-4(2010).

    [97] DU QUNGUI, X JIANG, X ZHANG et al. Influence of structure parameters on performance of the thermoelectric module. J. Wuhan Uni. Tech. Mater. Sci. Edition, 26, 464-468(2011).

    [98] U SEETAWAN, T SEETAWAN, A RATCHASIN et al. Analysis of thermoelectric generator by finite element method. Procedia Eng., 32, 1006-1011(2012).

    [99] S AL-MERBATI A, Z SAHIN A, S YILBAS B. Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance. Appl. Therm. Eng., 50, 683-692(2013).

    [100] G WU, X YU. A holistic 3D finite element simulation model for thermoelectric power generator element. Energy Convers. Manage., 86, 99-110(2014).

    [101] Q QIU, H YU, Z ZHANG et al. Performance of thermoelectric generator with ANSYS. Trans. China Electrotech. Soc., 29, 253-260(2014).

    [102] S TURENNE, T CLIN, D VASILEVSKIY et al. Finite element thermomechanical modeling of large area thermoelectric generators based on bismuth telluride alloys.. Electron. Mater., 39, 1926-1933(2010).

    [103] D ZHANG X, G DU Q, L GAO J et al. Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module.. Electron. Mater., 40, 884-888(2011).

    [104] Y MU, P ZHAI, G CHEN et al. An investigation on the coupled thermal-mechanical-electrical response of automobile thermoelectric materials and devices.. Electron. Mater., 42, 1762-1770(2013).

    [105] K ERERMISB K. MOSSIA, U ERTURUNA. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Appl. Therm. Eng., 73, 128-141(2014).

    [106] J LUSTE O, I ANATYCHUK L. On the Reliability of Thermoelectric Cooling and Generator Modules. 17th International Conference on Thermoelectrics, 101-104(1998).

    [107] G SUBBARAYAN, K SETTY, L NGUYEN. Power cycling reliability, failure analysis and acceleration factors of Pb-free solder joints. Proceedings Electronic Components and Technology, 1, 907-915(2005).

    [108] S CHOI H, K CHOI D, S SEO W. Prediction of reliability on thermoelectric module through accelerated life test and physics-of-failure. Electron. Mater. Lett., 7, 271-275(2011).

    [109] T BARAKO M, M MARCONNET A, W PARK et al. Effect of Thermal Cycling on Commercial Thermoelectric Modules. Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 107-112(2012).

    [110] T BARAKO M, W PARK, M MARCONNET A et al. A Reliability Study with Infrared Imaging of Thermoelectric Modules Under Thermal Cycling. Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, 86-92(2012).

    [111] T BARAKO M, M ASHEGHI, M MARCONNET A et al. Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module.. Electron. Mater., 42, 372-381(2013).

    [112] A DATE, A AKBARZADEH, C DING L. Performance and reliability of commercially available thermoelectric cells for power generation. Appl. Therm. Eng., 102, 548-556(2016).

    [113] C MO, K KARRI N. Reliable thermoelectric module design under opposing requirements from structural and thermoelectric considerations.. Electron. Mater., 47, 3127-3135(2018).

    [114] D SOUZA C P, A VIEIRA D, H C R L TENORIO. Measurement of parameters and degradation of thermoelectric modules. IEEE Instru. Meas. Mag., 20, 13-19(2017).

    [115] X LI, L HE, D ZHAO et al. Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging.. Alloys Compd., 477, 425-431(2009).

    [116] X XIA, M GU, S BAI et al. Study on the high temperature interfacial stability of Ti/Mo/Yb0.3Co4Sb12 thermoelectric joints. Appl. Sci., 7, 952-1-10(2017).

    Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], [in Chinese]. Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects[J]. Journal of Inorganic Materials, 2019, 34(3): 279
    Download Citation