• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 279 (2019)
Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.15541/jim20180465 Cite this Article
    Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], [in Chinese]. Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects[J]. Journal of Inorganic Materials, 2019, 34(3): 279 Copy Citation Text show less
    Timelines underscoring the improvement in (a) zT value of typical thermoelectric materials[6,7] and (b) conversion efficiency of typical thermoelectric power generation devices[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]
    . Timelines underscoring the improvement in (a) zT value of typical thermoelectric materials[6,7] and (b) conversion efficiency of typical thermoelectric power generation devices[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]
    Schematic diagram of the full-chain development of thermoelectric conversion technology
    . Schematic diagram of the full-chain development of thermoelectric conversion technology
    Diagram of key scientific and technical issues in the design and integration of TE devices
    . Diagram of key scientific and technical issues in the design and integration of TE devices
    Schematic diagram of energy conversion process for thermoelectric power generation devices[45]
    . Schematic diagram of energy conversion process for thermoelectric power generation devices[45]
    (a) Conversion efficiency as a function of thermoelectricelement height for different thermal contact parameter,r,and (b) power output ratio Pc/Pmax as a function of the electrical contact parameter,n, for different thermoelectric element height[46]
    . (a) Conversion efficiency as a function of thermoelectricelement height for different thermal contact parameter,r,and (b) power output ratio Pc/Pmax as a function of the electrical contact parameter,n, for different thermoelectric element height[46]
    Schematic diagram of various thermal losses in thermoelectric devices
    . Schematic diagram of various thermal losses in thermoelectric devices
    Analogical scheme of the thermoelectric phenomena with the thermal capacitances $C_{n}=\rho ·n·C_{p_{n}}·\frac{H}{N}·A$ and thermal conductances $K_{n}=\frac{k_{n}·A}{H/N}$ [55]
    . Analogical scheme of the thermoelectric phenomena with the thermal capacitances $C_{n}=\rho ·n·C_{p_{n}}·\frac{H}{N}·A$ and thermal conductances $K_{n}=\frac{k_{n}·A}{H/N}$ [55]
    Logical framework for the full-parameter optimization of a thermoelectric power generation module[40]
    . Logical framework for the full-parameter optimization of a thermoelectric power generation module[40]
    Diagram of main failure modes of thermoelectric devices
    . Diagram of main failure modes of thermoelectric devices
    Scanning electron microscope images of CoSb3/Ti/Mo-Cu interface after thermal aging at 550 ℃ for different periods[115](a) 0; (b) 8 d; (c) 20 d; (d) 30 d
    . Scanning electron microscope images of CoSb3/Ti/Mo-Cu interface after thermal aging at 550 ℃ for different periods[115]
    (a) 0; (b) 8 d; (c) 20 d; (d) 30 d
    (a) Schematic diagram of the formation of Ti(100-x)Alx-Yb0.6Co4Sb12 interface, (b) the diffusion layer thickness and (c) specificcontact resistivity of the Ti(100-x)Alx-Yb0.6Co4Sb12 interface as a function of the thermal aging time under 600 ℃ and vacuum condition[79]
    . (a) Schematic diagram of the formation of Ti(100-x)Alx-Yb0.6Co4Sb12 interface, (b) the diffusion layer thickness and (c) specificcontact resistivity of the Ti(100-x)Alx-Yb0.6Co4Sb12 interface as a function of the thermal aging time under 600 ℃ and vacuum condition[79]
    Thermoelectric material(Th/Tc)/℃ElectrodeInterface layerJoining methodRef.
    Bismuth telluride240/22CuNiSoldering[59-60]
    Bismuth telluride--NiOne-step hot press sintering[61]
    Bismuth telluride200/-CuNiSolid-liquid diffusion welding[62]
    Bismuth telluride250/50AlMoPlasma spraying[63]
    Bismuth telluride240/20CuMoArc spraying[64]
    MgAg0.965Ni0.005Sb0.99245/20Ag-Diffusion welding[65]
    Poly[Ax(M-ett)]147/67Hot side: AlAu[66]
    Cold side: Ag
    n-type PbTe + p-type TAGS 85500/100AgAg/Fe/Ag + FeDiffusion welding[25]
    Skutterudite500/40AlMoBrazing[67]
    Skutterudite550/70n-type: CoSi2[31]
    p-type: Co2Si
    Skutterudite600/35Hot side: Mo-Cu
    Cold side: Cu
    Ti-AlBrazing[17]
    n-type Bi2Te3/PbTe +
    p-type Sb2Te3/PbTe
    600/10CuHot side: Co0.8Fe0.2Liquid InGa eutectic alloy[35]
    Cold side: Ni
    Bismuth telluride/ Skutterudite600/35Hot side: Mo-CuHot side: Ti-AlWelding[40]
    Cold side: CuCold side: Ni
    Half-Heusler718/63Hot side: Mo-CuBrazing[18]
    Cold side: Cu
    n-type Fe0.93Co0.07Si1.99Al0.01 +
    p-type MnSi1.73
    700/100TiSi2Welding[19]
    SiGealloy870/31MoPressure contactCold side In welding[68]
    SiGe alloy553/44MoCBrazing[69]
    SiGe alloy1000/300With Ti layerDiffusion welding[70]
    n-type Ca0.92La0.08MnO3 +
    p-type Ca2.75Gd0.25Co4O9
    773 /383Silver electrodeSilver paste[71]
    p-type Mg2Si0.53Sn0.4Ge0.05Bi0.02 +
    n-type MnSi1.75Ge0.01
    735/50Hot side: Mop-type: Ni/Pb/NiSpring contact[37]
    Cold side: Cun-type: Cu
    Table 1. Electrode, interface layer and joining method of typical thermoelectric devices
    Qi-Hao ZHANG, Sheng-Qiang BAI, Li-Dong CHEN, [in Chinese], [in Chinese], [in Chinese]. Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects[J]. Journal of Inorganic Materials, 2019, 34(3): 279
    Download Citation